Diffusion Combinatoric Correntropy Algorithm for Distributed Estimation

Distributed estimation algorithms, when based on the mean-square error criterion, often encounter steady-state misalignment in scenarios where the adaptive network experiences impulsive noise. Addressing this challenge, this paper introduces the diffusion combinatoric correntropy algorithm, which em...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Circuits, systems, and signal processing Ročník 44; číslo 2; s. 889 - 910
Hlavní autori: Wang, Shengwei, Xu, Yurong, Xu, Tianci, Yang, Kuojian
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.02.2025
Springer Nature B.V
Predmet:
ISSN:0278-081X, 1531-5878
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Distributed estimation algorithms, when based on the mean-square error criterion, often encounter steady-state misalignment in scenarios where the adaptive network experiences impulsive noise. Addressing this challenge, this paper introduces the diffusion combinatoric correntropy algorithm, which employs the combinatoric correntropy as its cost function. Leveraging the inherent robustness of the combinatoric correntropy cost function, this algorithm effectively mitigates the negative impacts caused by impulse noise. A comprehensive analysis, including experimental simulations, is conducted to evaluate the performance of the diffusion combinatoric maximum correntropy criterion algorithm. The simulation outcomes demonstrate that the proposed algorithm surpasses the diffusion maximum correntropy criterion algorithm in terms of convergence speed and steady-state performance. These simulation results align closely with the theoretical analysis, further validating the effectiveness of the diffusion combinatoric correntropy algorithm.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0278-081X
1531-5878
DOI:10.1007/s00034-024-02826-8