Memory-Efficient Attacks on Small LWE Keys

Combinatorial attacks on small max norm LWE keys suffer enormous memory requirements, which render them inefficient in realistic attack scenarios. Therefore, more memory-efficient substitutes for these algorithms are needed. In this work, we provide new combinatorial algorithms for recovering small...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of cryptology Ročník 37; číslo 4; s. 36
Hlavní autori: Esser, Andre, Mukherjee, Arindam, Sarkar, Santanu
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.10.2024
Springer Nature B.V
Predmet:
ISSN:0933-2790, 1432-1378
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Combinatorial attacks on small max norm LWE keys suffer enormous memory requirements, which render them inefficient in realistic attack scenarios. Therefore, more memory-efficient substitutes for these algorithms are needed. In this work, we provide new combinatorial algorithms for recovering small max norm LWE secrets outperforming previous approaches whenever the available memory is limited. We provide analyses of our algorithms for secret key distributions of current NTRU, Kyber and Dilithium variants, showing that our new approach outperforms previous memory-efficient algorithms. For instance, considering uniformly random ternary secrets of length n we improve the best known time complexity for polynomial memory algorithms from 2 1.063 n down-to 2 0.926 n . We obtain even larger gains for LWE secrets in { - m , … , m } n with m = 2 , 3 as found in Kyber and Dilithium. For example, for uniformly random keys in { - 2 , … , 2 } n as is the case for Dilithium we improve the previously best time under polynomial memory restriction from 2 1.742 n down-to 2 1.282 n . Eventually, we provide novel time-memory trade-offs continuously interpolating between our polynomial memory algorithms and the best algorithms in the unlimited memory case (May, in: Malkin, Peikert (eds) CRYPTO 2021, Part II, Springer, Heidelberg 2021. https://doi.org/10.1007/978-3-030-84245-1_24 ).
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0933-2790
1432-1378
DOI:10.1007/s00145-024-09516-3