Channel Estimation for Sparse mm-Wave MIMO System

The fifth-generation (5G) cellular networks will provide gigabit-per-second data rates from massive antenna array combined with the emerging use of large and unexploited millimeter wave (mm-Wave) bands (30–300 GHz) in small cells. Channel estimation for sparse mm-Wave MIMO systems is a difficult tas...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Wireless personal communications Ročník 129; číslo 3; s. 2123 - 2140
Hlavní autoři: Purohit, Naresh, Gupta, Namit
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.04.2023
Springer Nature B.V
Témata:
ISSN:0929-6212, 1572-834X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The fifth-generation (5G) cellular networks will provide gigabit-per-second data rates from massive antenna array combined with the emerging use of large and unexploited millimeter wave (mm-Wave) bands (30–300 GHz) in small cells. Channel estimation for sparse mm-Wave MIMO systems is a difficult task. This is because of a large number of coefficients to be estimated, lower scattering nature, and blockage of mm-Wave by many materials in the environment. This paper will be the opportunity to implement the sparse channel estimation in the 5G cellular networks. In this work, we propose compressed-sensing (CS) based solutions and implements hybrid MIMO architecture for the proposed algorithm, OMP algorithm, and oracle estimator with different mm-Wave MIMO setups. Simulation results show that as compared to the OMP algorithm, proposed algorithm requires 16.9 times less computation time, and significant improvement is seen in normalized mean squared error (NMSE). Also, in the analysis, we found that the performance of the hybrid MIMO approaches near-optimal to conventional fully digital precoder.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0929-6212
1572-834X
DOI:10.1007/s11277-023-10227-4