Generalized weak Galerkin finite element method for linear elasticity interface problems

A generalized weak Galerkin finite element method for linear elasticity interface problems is presented. The generalized weak gradient (divergence) is consisted of classical gradient (divergence) and the solution of local problem. Thus, the finite element space can be extended to arbitrary combinati...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Numerical algorithms Ročník 99; číslo 2; s. 1005 - 1042
Hlavní autori: Wang, Yue, Gao, Fuzheng
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.06.2025
Springer Nature B.V
Predmet:
ISSN:1017-1398, 1572-9265
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:A generalized weak Galerkin finite element method for linear elasticity interface problems is presented. The generalized weak gradient (divergence) is consisted of classical gradient (divergence) and the solution of local problem. Thus, the finite element space can be extended to arbitrary combination of piecewise polynomial spaces. The error equation and error estimates are proved. The numerical results illustrate the efficiency and flexibility for different interfaces, partitions and combinations, the locking-free property, the well performance for low regularity solution in discrete energy, L 2 and L ∞ norms. Meanwhile, we present the numerical comparison between our algorithm and the weak Galerkin finite element algorithm to demonstrate the flexibility of our algorithm. In addition, for some cases, the convergence rates in numerical tests are obviously higher than the theoretical prediction for the smooth and low regularity solutions.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1017-1398
1572-9265
DOI:10.1007/s11075-024-01904-x