A Superlinearly Convergent Sequential Quadratically Constrained Quadratic Programming Algorithm for Degenerate Nonlinear Programming
We present an algorithm that achieves superlinear convergence for nonlinear programs satisfying the Mangasarian--Fromovitz constraint qualification and the quadratic growth condition. This convergence result is obtained despite the potential lack of a locally convex augmented Lagrangian. The algorit...
Uloženo v:
| Vydáno v: | SIAM journal on optimization Ročník 12; číslo 4; s. 949 - 978 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Philadelphia
Society for Industrial and Applied Mathematics
2002
|
| Témata: | |
| ISSN: | 1052-6234, 1095-7189 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We present an algorithm that achieves superlinear convergence for nonlinear programs satisfying the Mangasarian--Fromovitz constraint qualification and the quadratic growth condition. This convergence result is obtained despite the potential lack of a locally convex augmented Lagrangian. The algorithm solves a succession of subproblems that have quadratic objectives and quadratic constraints, both possibly nonconvex. By the use of a trust-region constraint we guarantee that any stationary point of the subproblem induces superlinear convergence, which avoids the problem of computing a global minimum. We compare this algorithm with sequential quadratic programming algorithms on several degenerate nonlinear programs. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 |
| ISSN: | 1052-6234 1095-7189 |
| DOI: | 10.1137/S1052623499365309 |