A Superlinearly Convergent Sequential Quadratically Constrained Quadratic Programming Algorithm for Degenerate Nonlinear Programming
We present an algorithm that achieves superlinear convergence for nonlinear programs satisfying the Mangasarian--Fromovitz constraint qualification and the quadratic growth condition. This convergence result is obtained despite the potential lack of a locally convex augmented Lagrangian. The algorit...
Gespeichert in:
| Veröffentlicht in: | SIAM journal on optimization Jg. 12; H. 4; S. 949 - 978 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Philadelphia
Society for Industrial and Applied Mathematics
2002
|
| Schlagworte: | |
| ISSN: | 1052-6234, 1095-7189 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | We present an algorithm that achieves superlinear convergence for nonlinear programs satisfying the Mangasarian--Fromovitz constraint qualification and the quadratic growth condition. This convergence result is obtained despite the potential lack of a locally convex augmented Lagrangian. The algorithm solves a succession of subproblems that have quadratic objectives and quadratic constraints, both possibly nonconvex. By the use of a trust-region constraint we guarantee that any stationary point of the subproblem induces superlinear convergence, which avoids the problem of computing a global minimum. We compare this algorithm with sequential quadratic programming algorithms on several degenerate nonlinear programs. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 |
| ISSN: | 1052-6234 1095-7189 |
| DOI: | 10.1137/S1052623499365309 |