A novel hybrid learning based Ada Boost (HLBAB) classifier for channel state estimation in cognitive networks
Spectrum sensing, through efficient channel estimation methods utilizing cognitive radio networks, has become an increasingly researched area in recent times. This has become more pronounced in recent times, especially with increasing scarcity in availability of radio frequency spectrum. Wireless st...
Uložené v:
| Vydané v: | International journal of dynamics and control Ročník 9; číslo 1; s. 299 - 307 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.03.2021
Springer Nature B.V |
| Predmet: | |
| ISSN: | 2195-268X, 2195-2698 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Spectrum sensing, through efficient channel estimation methods utilizing cognitive radio networks, has become an increasingly researched area in recent times. This has become more pronounced in recent times, especially with increasing scarcity in availability of radio frequency spectrum. Wireless state of the art communication standards demand high bandwidth to provide seamless connectivity and high degree of mobility, which requires more of radio frequency band for functioning. Hence, intelligent methods of spectrum allocation have been an increasing challenge in recent times. This paper proposes a hybrid learning based-Ada Boost classifier model for efficient spectrum allocation through channel state estimation through a learning and double classification approach. The proposed algorithm has been experimented in a high bandwidth characterized 5G communication simulation settings and observed for its performance measures namely collision rate analysis, throughput, probability of detection, false alarm detection and bit error rate. The proposed technique has been compared against benchmark techniques such as conventional fast Fourier transform based energy detector, fuzzy cognitive engine and adaptive neuro fuzzy inference model without Ada Boost and found to exhibit superior performance in all performance measures. The proposed technique exhibits a spectral efficiency of nearly 90% and considered to be a suitable spectrum sensing scheme for high bandwidth and narrowband utilities. |
|---|---|
| AbstractList | Spectrum sensing, through efficient channel estimation methods utilizing cognitive radio networks, has become an increasingly researched area in recent times. This has become more pronounced in recent times, especially with increasing scarcity in availability of radio frequency spectrum. Wireless state of the art communication standards demand high bandwidth to provide seamless connectivity and high degree of mobility, which requires more of radio frequency band for functioning. Hence, intelligent methods of spectrum allocation have been an increasing challenge in recent times. This paper proposes a hybrid learning based-Ada Boost classifier model for efficient spectrum allocation through channel state estimation through a learning and double classification approach. The proposed algorithm has been experimented in a high bandwidth characterized 5G communication simulation settings and observed for its performance measures namely collision rate analysis, throughput, probability of detection, false alarm detection and bit error rate. The proposed technique has been compared against benchmark techniques such as conventional fast Fourier transform based energy detector, fuzzy cognitive engine and adaptive neuro fuzzy inference model without Ada Boost and found to exhibit superior performance in all performance measures. The proposed technique exhibits a spectral efficiency of nearly 90% and considered to be a suitable spectrum sensing scheme for high bandwidth and narrowband utilities. |
| Author | Vadivukkarasi, S. Santhi, S. |
| Author_xml | – sequence: 1 givenname: S. surname: Vadivukkarasi fullname: Vadivukkarasi, S. email: vadivukkarasi.at2018@gmail.com organization: Department of Instrumentation Engineering, Annamalai University – sequence: 2 givenname: S. surname: Santhi fullname: Santhi, S. organization: Department of Instrumentation Engineering, Annamalai University |
| BookMark | eNp9kDFPwzAUhC0EEqX0DzBZYoEh8Ow4jTOmFVCkSiwgsVlO-tK6pHax06L8ewxFsDHdG-67d7ozcmydRUIuGNwwgPw2CBBplgCHBGCcpkl_RAacFVnCx4U8_r3l6ykZhbAGAM4EcFEMyKak1u2xpau-8mZBW9TeGruklQ64oOVC04lzoaNXs_mknFzTutUhmMagp43ztF5payMeOt0hxdCZje6Ms9RYWrulNZ3ZI7XYfTj_Fs7JSaPbgKMfHZKX-7vn6SyZPz08Tst5UvMcukTyHBsAUaS8ANGMa9bITAghMZVMZLzKGCLP84XGqpZVhU0Ullc8A61ZVaRDcnnI3Xr3vout1NrtvI0vFRcyj0mSs-jiB1ftXQgeG7X1sb7vFQP1taw6LKvisup7WdVHKD1AIZrtEv1f9D_UJ-tBfc0 |
| Cites_doi | 10.1109/SURV.2009.090109 10.5121/ijngn.2011.3203 10.1109/TWC.2008.060869 10.1109/T-WC.2008.070420 10.1109/JSAC.2014.140314 10.1016/j.jcss.2004.10.015 10.1155/2010/381465 10.1109/TVT.2010.2043968 10.1109/TVT.2013.2260834 10.1109/TCOMM.2013.050813.120877 10.1109/MWC.2013.6507399 10.1002/wcm.1017 10.1109/JSAC.2007.070409 10.1109/JSAC.2008.080103 10.1109/TWC.2009.081106 10.1109/ICC.2010.5502348 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag GmbH Germany, part of Springer Nature 2020 Springer-Verlag GmbH Germany, part of Springer Nature 2020. |
| Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020 – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020. |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s40435-020-00633-y |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2195-2698 |
| EndPage | 307 |
| ExternalDocumentID | 10_1007_s40435_020_00633_y |
| GroupedDBID | -EM 0R~ 30V 4.4 406 96X AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAZMS ABAKF ABDZT ABECU ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABTEG ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACIWK ACKNC ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADRFC ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AILAN AITGF AJBLW AJRNO AJZVZ AKLTO ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH ASPBG AUKKA AVWKF AVXWI AXYYD AZFZN BGNMA DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD H13 HMJXF HRMNR HVGLF HZ~ I0C IKXTQ IWAJR J-C JBSCW JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9- O9J PT4 RLLFE ROL RSV SCL SHX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UG4 UOJIU UTJUX UZXMN VFIZW W48 ZMTXR AAYXX ABBRH ABDBE ABFSG ABJCF ABRTQ ACSTC AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AHPBZ AHWEU AIXLP ARAPS ATHPR AYFIA BENPR BGLVJ CCPQU CITATION HCIFZ M7S PHGZM PHGZT PQGLB PTHSS |
| ID | FETCH-LOGICAL-c270t-827ef004932904f6c1f854448e381452b51ee277daebc8bbefbc817b250aa1b93 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001054388500026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2195-268X |
| IngestDate | Thu Sep 18 00:04:19 EDT 2025 Sat Nov 29 03:59:53 EST 2025 Fri Feb 21 02:48:40 EST 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Spectrum sensing Back propagation learning Ada Boost algorithms Supervised learning Cognitive radio networks Channel state estimation |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c270t-827ef004932904f6c1f854448e381452b51ee277daebc8bbefbc817b250aa1b93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2487448821 |
| PQPubID | 2043900 |
| PageCount | 9 |
| ParticipantIDs | proquest_journals_2487448821 crossref_primary_10_1007_s40435_020_00633_y springer_journals_10_1007_s40435_020_00633_y |
| PublicationCentury | 2000 |
| PublicationDate | 2021-03-01 |
| PublicationDateYYYYMMDD | 2021-03-01 |
| PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | International journal of dynamics and control |
| PublicationTitleAbbrev | Int. J. Dynam. Control |
| PublicationYear | 2021 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Sutton, Nolan, Doyle (CR7) 2008; 26 Xu, Lu, Chen (CR21) 2014; 6 CR8 Xing, Jing, Cheng, Huo, Cheng (CR10) 2013; 20 Mannor, Meir, Zhang (CR15) 2003; 4 Liang, Zeng, Peh, Hoang (CR4) 2008; 7 Tumuluru, Wang, Niyato (CR9) 2012; 12 Zhang, Wu, Lau (CR2) 2009; 8 Wan, Hu, Wang (CR13) 2016; 32 Lee, Akyildiz (CR6) 2008; 7 Noh, Oh (CR22) 2014; 32 Yucek, Arslan (CR3) 2009; 11 Subhedar, Birajdar (CR12) 2011; 3 Lin, Cheng, Jiang (CR16) 2016; 49 Atapattu, Tellambura, Jiang (CR14) 2001; 10 Sharma, Chatzinotas, Ottersten (CR17) 2013; 62 Li (CR18) 2015; 38 Zhao, Tong, Swami, Chen (CR19) 2007; 25 Zeng, Liang, Hoang, Zhang (CR1) 2010; 2010 Kalai, Servedio (CR5) 2005; 71 Che, Zhang, Gong (CR20) 2013; 61 He (CR11) 2010; 59 M Subhedar (633_CR12) 2011; 3 G Lin (633_CR16) 2016; 49 AT Kalai (633_CR5) 2005; 71 Y Che (633_CR20) 2013; 61 Y Xu (633_CR21) 2014; 6 PD Sutton (633_CR7) 2008; 26 A He (633_CR11) 2010; 59 SK Sharma (633_CR17) 2013; 62 X Wan (633_CR13) 2016; 32 J Noh (633_CR22) 2014; 32 S Atapattu (633_CR14) 2001; 10 WY Lee (633_CR6) 2008; 7 S Zhang (633_CR2) 2009; 8 YC Liang (633_CR4) 2008; 7 S Mannor (633_CR15) 2003; 4 633_CR8 H Li (633_CR18) 2015; 38 Q Zhao (633_CR19) 2007; 25 T Yucek (633_CR3) 2009; 11 Y Zeng (633_CR1) 2010; 2010 X Xing (633_CR10) 2013; 20 VK Tumuluru (633_CR9) 2012; 12 |
| References_xml | – volume: 11 start-page: 116 issue: 1 year: 2009 end-page: 129 ident: CR3 article-title: A survey of spectrum sensing algorithms for cognitive radio networks publication-title: IEEE Commun Surv Tutor doi: 10.1109/SURV.2009.090109 – volume: 3 start-page: 37 issue: 2 year: 2011 end-page: 51 ident: CR12 article-title: Spectrum sensing techniques in cognitive radio networks—a survey publication-title: Int J Next Gener Netw doi: 10.5121/ijngn.2011.3203 – volume: 7 start-page: 1326 issue: 4 year: 2008 end-page: 1337 ident: CR4 article-title: Sensing-throughput tradeoff for cognitive radio networks publication-title: IEEE Trans Wirel Commun doi: 10.1109/TWC.2008.060869 – volume: 7 start-page: 3845 issue: 10 year: 2008 end-page: 3857 ident: CR6 article-title: Optimal spectrum sensing framework for cognitive radio networks publication-title: IEEE Trans Wirel Commun doi: 10.1109/T-WC.2008.070420 – volume: 32 start-page: 539 issue: 3 year: 2014 end-page: 549 ident: CR22 article-title: Cognitive radio channel with cooperative multi-antenna secondary systems publication-title: IEEE J Sel Areas Commun doi: 10.1109/JSAC.2014.140314 – volume: 71 start-page: 266 issue: 3 year: 2005 end-page: 290 ident: CR5 article-title: Boosting in presence of noise publication-title: J Comput Syst Sci doi: 10.1016/j.jcss.2004.10.015 – volume: 2010 start-page: 1 year: 2010 end-page: 15 ident: CR1 article-title: A review on spectrum sensing for cognitive radio: challenges and solutions publication-title: EURASIP J Adv Signal Process doi: 10.1155/2010/381465 – volume: 59 start-page: 1578 issue: 4 year: 2010 end-page: 1592 ident: CR11 article-title: A survey of artificial intelligence for cognitive radios publication-title: IEEE Trans Veh Technol doi: 10.1109/TVT.2010.2043968 – volume: 62 start-page: 3671 issue: 8 year: 2013 end-page: 3684 ident: CR17 article-title: Eigen value based sensing and SNR estimation for cognitive radio in presence of noise correlation publication-title: IEEE Trans Veh Technol doi: 10.1109/TVT.2013.2260834 – volume: 6 start-page: 2855 issue: 17 year: 2014 end-page: 2863 ident: CR21 article-title: Prediction method of cognitive radio spectrum based on support vector machine publication-title: J Telecommun Sci – volume: 32 start-page: 52 issue: 3 year: 2016 end-page: 59 ident: CR13 article-title: ISM band prediction algorithm based on two dimensional LMBP neural network publication-title: J Telecommun Sci – volume: 61 start-page: 2678 issue: 7 year: 2013 end-page: 2691 ident: CR20 article-title: On design of opportunistic spectrum access in the presence of reactive primary users publication-title: IEEE Trans Commun doi: 10.1109/TCOMM.2013.050813.120877 – volume: 20 start-page: 90 issue: 2 year: 2013 end-page: 96 ident: CR10 article-title: Spectrum prediction in cognitive radio networks publication-title: IEEE Wirel Commun doi: 10.1109/MWC.2013.6507399 – volume: 12 start-page: 862 issue: 10 year: 2012 end-page: 874 ident: CR9 article-title: Channel status prediction, n for cognitive radio networks publication-title: J Wirel Commun Mob Comput doi: 10.1002/wcm.1017 – volume: 4 start-page: 713 year: 2003 end-page: 742 ident: CR15 article-title: Greedy algorithms for classification—consistency convergence rates and adaptivity publication-title: J Mach Learn Res – volume: 38 start-page: 617 issue: 7 year: 2015 end-page: 627 ident: CR18 article-title: Cognitive radio based on the support vector machine to estimate the spectrum of leisure publication-title: J Mod Electron Technol – ident: CR8 – volume: 10 start-page: 1 issue: 4 year: 2001 end-page: 10 ident: CR14 article-title: Energy detection based cooperative spectrum sensing in cognitive radio networks publication-title: IEEE Trans Wirel Commun – volume: 25 start-page: 589 issue: 3 year: 2007 end-page: 600 ident: CR19 article-title: Decentralized cognitive MAC for opportunistic spectrum access in ad hoc networks: a POMDP framework publication-title: IEEE J Sel Areas Commun doi: 10.1109/JSAC.2007.070409 – volume: 26 start-page: 13 issue: 1 year: 2008 end-page: 24 ident: CR7 article-title: Cyclostationary signatures in practical cognitive radio applications publication-title: IEEE J Sel Areas Commun doi: 10.1109/JSAC.2008.080103 – volume: 49 start-page: 44 issue: 3 year: 2016 end-page: 59 ident: CR16 article-title: Performance analysis of three-state HMM in shortwave channel estimation publication-title: J Commun Technol – volume: 8 start-page: 5575 issue: 11 year: 2009 end-page: 5581 ident: CR2 article-title: A low-overhead energy detection based cooperative sensing protocol for cognitive radio systems publication-title: IEEE Trans Wirel Commun doi: 10.1109/TWC.2009.081106 – volume: 49 start-page: 44 issue: 3 year: 2016 ident: 633_CR16 publication-title: J Commun Technol – volume: 61 start-page: 2678 issue: 7 year: 2013 ident: 633_CR20 publication-title: IEEE Trans Commun doi: 10.1109/TCOMM.2013.050813.120877 – volume: 38 start-page: 617 issue: 7 year: 2015 ident: 633_CR18 publication-title: J Mod Electron Technol – volume: 26 start-page: 13 issue: 1 year: 2008 ident: 633_CR7 publication-title: IEEE J Sel Areas Commun doi: 10.1109/JSAC.2008.080103 – volume: 7 start-page: 1326 issue: 4 year: 2008 ident: 633_CR4 publication-title: IEEE Trans Wirel Commun doi: 10.1109/TWC.2008.060869 – volume: 8 start-page: 5575 issue: 11 year: 2009 ident: 633_CR2 publication-title: IEEE Trans Wirel Commun doi: 10.1109/TWC.2009.081106 – volume: 32 start-page: 52 issue: 3 year: 2016 ident: 633_CR13 publication-title: J Telecommun Sci – volume: 4 start-page: 713 year: 2003 ident: 633_CR15 publication-title: J Mach Learn Res – ident: 633_CR8 doi: 10.1109/ICC.2010.5502348 – volume: 3 start-page: 37 issue: 2 year: 2011 ident: 633_CR12 publication-title: Int J Next Gener Netw doi: 10.5121/ijngn.2011.3203 – volume: 12 start-page: 862 issue: 10 year: 2012 ident: 633_CR9 publication-title: J Wirel Commun Mob Comput doi: 10.1002/wcm.1017 – volume: 25 start-page: 589 issue: 3 year: 2007 ident: 633_CR19 publication-title: IEEE J Sel Areas Commun doi: 10.1109/JSAC.2007.070409 – volume: 59 start-page: 1578 issue: 4 year: 2010 ident: 633_CR11 publication-title: IEEE Trans Veh Technol doi: 10.1109/TVT.2010.2043968 – volume: 62 start-page: 3671 issue: 8 year: 2013 ident: 633_CR17 publication-title: IEEE Trans Veh Technol doi: 10.1109/TVT.2013.2260834 – volume: 7 start-page: 3845 issue: 10 year: 2008 ident: 633_CR6 publication-title: IEEE Trans Wirel Commun doi: 10.1109/T-WC.2008.070420 – volume: 32 start-page: 539 issue: 3 year: 2014 ident: 633_CR22 publication-title: IEEE J Sel Areas Commun doi: 10.1109/JSAC.2014.140314 – volume: 2010 start-page: 1 year: 2010 ident: 633_CR1 publication-title: EURASIP J Adv Signal Process doi: 10.1155/2010/381465 – volume: 6 start-page: 2855 issue: 17 year: 2014 ident: 633_CR21 publication-title: J Telecommun Sci – volume: 10 start-page: 1 issue: 4 year: 2001 ident: 633_CR14 publication-title: IEEE Trans Wirel Commun – volume: 20 start-page: 90 issue: 2 year: 2013 ident: 633_CR10 publication-title: IEEE Wirel Commun doi: 10.1109/MWC.2013.6507399 – volume: 11 start-page: 116 issue: 1 year: 2009 ident: 633_CR3 publication-title: IEEE Commun Surv Tutor doi: 10.1109/SURV.2009.090109 – volume: 71 start-page: 266 issue: 3 year: 2005 ident: 633_CR5 publication-title: J Comput Syst Sci doi: 10.1016/j.jcss.2004.10.015 |
| SSID | ssj0002140249 ssib031263557 |
| Score | 2.1509705 |
| Snippet | Spectrum sensing, through efficient channel estimation methods utilizing cognitive radio networks, has become an increasingly researched area in recent times.... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 299 |
| SubjectTerms | Algorithms Bandwidths Bit error rate Classifiers Cognitive radio Collision dynamics Collision rates Complexity Control Control and Systems Theory Dynamical Systems Engineering Error detection False alarms Fast Fourier transformations Fourier transforms Frequencies Frequency spectrum Machine learning Narrowband Spectrum allocation State estimation Utilities Vibration Wireless communications |
| Title | A novel hybrid learning based Ada Boost (HLBAB) classifier for channel state estimation in cognitive networks |
| URI | https://link.springer.com/article/10.1007/s40435-020-00633-y https://www.proquest.com/docview/2487448821 |
| Volume | 9 |
| WOSCitedRecordID | wos001054388500026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 2195-2698 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002140249 issn: 2195-268X databaseCode: RSV dateStart: 20130301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELWgMMDAN6JQ0A0MIIgU20mcjCmiYkAV4kvdItt1oBIkqAmV-u-xnaQFBANMGZJY0fnie6e79w6hYx65aeD7wokkoY7Hh8zhRDGHKRXgUKSC-dwOm2D9fjgYRDc1Kaxout2bkqQ9qWdkN6MDY9jEhgkdUOpMF9GSDnehGdhwe_fYeBHFRl-lruWZ85joHIJYHEzMYEIShIOaPfPzsl8j1Bx2fquU2gDUW__fp2-gtRpwQlx5yCZaUNkWWv0kQ7iNXmPI8ol6geep4W9BPUniCUyIG0I85NDN86KEk6vrbtw9BWkg9yjVERU05gVDHs7065acBEa2o-JDwiiDWXsSZFXDebGDHnqX9xdXTj2GwZGEuaUTEqZSk0lQErleGkichr6n0zqlo73nE-FjpQhjQ66EDIVQqb5gJjS44hyLiO6iVpZnag-BlK4vFZNM4whPYz1BdXoqtFdQhoUbRG101pg-eavUNpKZrrI1YqKNmFgjJtM26jS7k9R_XpEQzwj667wBt9F5sxvz27-vtv-3xw_QCjHtLbYdrYNa5fhdHaJlOSlHxfjIeuQHdILZOA |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEB20CurBb7FadQ8eFA1kNx-bHFOxVKxFtEpvIbvZaEETaWKh_97dbdKq6EFPOSRZwuxk5w0z7w3AceSbies4zPA5sQw7iqkREUENKoSLPZYw6kR62ATtdr1-378tSWF51e1elST1ST0luykdGMUmVkxo17KM8Tws2DJiKcX8u_vHyossrPRVylqeOo-JzCGIxsFEDSYkrtcv2TM_L_s1Qs1g57dKqQ5ArbX_ffo6rJaAEwUTD9mAOZFuwsonGcIteA1Qmo3EC3oeK_4WKidJPCEV4mIUxBFqZlleoJN2pxk0TxFXkHuQyIiKJOZFijycytc1OQkp2Y4JHxINUjRtT0LppOE834aH1mXvom2UYxgMTqhZGB6hIlGZhEV8005cjhPPsWVaJ2S0tx3CHCwEoTSOBOMeYyKRF0yZBFdRhJlv7UAtzVKxC4hz0-GCcipxhC2xHrNkesqkV1gUM9P163BWmT58m6hthFNdZW3EUBox1EYMx3VoVLsTln9eHhJbCfrLvAHX4bzajdnt31fb-9vjR7DU7t10ws5V93oflolqddGtaQ2oFcN3cQCLfFQM8uGh9s4PrFXcHA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58IXrwLa7PHDwoWrZNH2mPXXVRlEXwwd5Kk6a6oO1iq7D_3kzarg_0IJ56aBNoZtr5hpnvG4D9ODBTz3W5EQhqG06cMCOmkhlMSs_yecqZG-thE6zX8_v94PoTi193uzclyYrTgCpNWdkeJml7THxDTRhkFiMr2rNtYzQJ0w420mO-fnPfeJRtodZKXdfDfzNV-QTVmJjikELq-f2aSfPztl-j1QcE_VY11cGou_j_11iChRqIkrDynGWYkNkKzH-SJ1yF55Bk-Zt8Io8j5HWResLEA8HQl5AwiUknz4uSHJxfdcLOIREIxQepirREYWGCpOJMLdekJYJyHhVPkgwyMm5bIlnViF6swV337Pbk3KjHMxiCMrM0fMpkihmGTQPTST1hpb7rqHRPKhTguJS7lpSUsSSWXPicy1RdLMYV6Ipjiwf2OkxleSY3gAhhukIywRS-cBQG5LZKW7nyFptZ3PSCFhw1ZoiGlQpHNNZb1ocYqUOM9CFGoxZsN5aK6i-yiKiDQv8qn7BacNxY5uP277tt_u3xPZi9Pu1GVxe9yy2Yo9gBozvWtmGqfHmVOzAj3spB8bKrHfUdsnTlAA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+hybrid+learning+based+Ada+Boost+%28HLBAB%29+classifier+for+channel+state+estimation+in+cognitive+networks&rft.jtitle=International+journal+of+dynamics+and+control&rft.au=Vadivukkarasi%2C+S&rft.au=Santhi%2C+S&rft.date=2021-03-01&rft.pub=Springer+Nature+B.V&rft.issn=2195-268X&rft.eissn=2195-2698&rft.volume=9&rft.issue=1&rft.spage=299&rft.epage=307&rft_id=info:doi/10.1007%2Fs40435-020-00633-y&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2195-268X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2195-268X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2195-268X&client=summon |