An upper bound for the number of gravitationally lensed images in a multiplane point-mass ensemble

Herein we prove an upper bound on the number of gravitationally lensed images in a generic multiplane point-mass ensemble with K planes and g i masses in the i th plane. With E K and O K the sums of the even and odd degree terms respectively of the formal polynomial ∏ i = 1 K ( 1 + g i Z ) , the num...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Analysis and mathematical physics Ročník 11; číslo 2
Hlavní autor: Perry, Sean
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 01.06.2021
Springer Nature B.V
Témata:
ISSN:1664-2368, 1664-235X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Herein we prove an upper bound on the number of gravitationally lensed images in a generic multiplane point-mass ensemble with K planes and g i masses in the i th plane. With E K and O K the sums of the even and odd degree terms respectively of the formal polynomial ∏ i = 1 K ( 1 + g i Z ) , the number of lensed images of a single background point-source is shown to be bounded by E K 2 + O K 2 . Our proof uses the theory of resultants applied to a complex variable representation of the so-called lensing map. Previous studies concerning upper bounds for point-mass ensembles have been restricted to two special cases: one point-mass per plane and all point-masses in a single plane.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1664-2368
1664-235X
DOI:10.1007/s13324-021-00478-4