A hybrid autoencoder and index modulation framework for OTFS modulation

This paper presents an innovative approach to orthogonal time frequency space (OTFS) modulation by integrating autoencoder-based enhanced (AEE) joint delay-Doppler index modulation (JDDIM) techniques. The proposed AEE-JDDIM-OTFS framework leverages deep learning to optimize the mapping and demapping...

Full description

Saved in:
Bibliographic Details
Published in:Signal, image and video processing Vol. 19; no. 1; p. 13
Main Authors: Tek, Yusuf İslam, Doğukan, Ali Tuğberk, Gevez, Yarkın, Pıhtılı, Mehmet Ertuğ, Başar, Ertuğrul
Format: Journal Article
Language:English
Published: London Springer London 01.01.2025
Springer Nature B.V
Subjects:
ISSN:1863-1703, 1863-1711
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents an innovative approach to orthogonal time frequency space (OTFS) modulation by integrating autoencoder-based enhanced (AEE) joint delay-Doppler index modulation (JDDIM) techniques. The proposed AEE-JDDIM-OTFS framework leverages deep learning to optimize the mapping and demapping processes, significantly improving spectral and energy efficiency in high-mobility communication scenarios. The system’s performance is further enhanced by the introduction of a low-complexity greedy detector that maintains robust detection accuracy, even under imperfect channel state information (CSI) conditions. Extensive simulation results demonstrate that the proposed scheme achieves superior bit error rate (BER) performance compared to conventional OTFS and other OTFS-based modulation schemes, even in imperfect channel state information situations. The findings suggest that the AEE-JDDIM-OTFS framework offers a practical, low-complexity solution with promising potential for next-generation wireless communication systems.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1863-1703
1863-1711
DOI:10.1007/s11760-024-03688-y