On greedy approximation algorithm for the minimum resolving dominating set problem

In this paper, we investigate the minimum resolving dominating set problem which is a emerging combinatorial optimization problem in general graphs. We prove that the resolving dominating set problem is NP-hard and propose a greedy algorithm with an approximation ratio of ( 1 + 2 ln n ) by establish...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of combinatorial optimization Ročník 48; číslo 4; s. 35
Hlavní autor: Zhong, Hao
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.11.2024
Springer Nature B.V
Témata:
ISSN:1382-6905, 1573-2886
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we investigate the minimum resolving dominating set problem which is a emerging combinatorial optimization problem in general graphs. We prove that the resolving dominating set problem is NP-hard and propose a greedy algorithm with an approximation ratio of ( 1 + 2 ln n ) by establishing a submodular potential function, where n is the node number of the input graph.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1382-6905
1573-2886
DOI:10.1007/s10878-024-01229-4