On greedy approximation algorithm for the minimum resolving dominating set problem
In this paper, we investigate the minimum resolving dominating set problem which is a emerging combinatorial optimization problem in general graphs. We prove that the resolving dominating set problem is NP-hard and propose a greedy algorithm with an approximation ratio of ( 1 + 2 ln n ) by establish...
Uložené v:
| Vydané v: | Journal of combinatorial optimization Ročník 48; číslo 4; s. 35 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.11.2024
Springer Nature B.V |
| Predmet: | |
| ISSN: | 1382-6905, 1573-2886 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | In this paper, we investigate the minimum resolving dominating set problem which is a emerging combinatorial optimization problem in general graphs. We prove that the resolving dominating set problem is NP-hard and propose a greedy algorithm with an approximation ratio of (
1
+
2
ln
n
) by establishing a submodular potential function, where
n
is the node number of the input graph. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1382-6905 1573-2886 |
| DOI: | 10.1007/s10878-024-01229-4 |