Three inertial acceleration algorithms for solving non-monotone equilibrium problems in Hilbert spaces

Several results on iterative methods for equilibrium problems have been proposed and studied in the literature. Most of these results are obtained when the associated bifunction of the equilibrium problem is either a monotone or pseudomonotone operator. Results on iterative methods for equilibrium p...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Acta mathematica scientia Ročník 45; číslo 4; s. 1674 - 1700
Hlavní autoři: Yao, Yonghong, Iyiola, Olaniyi S., Shehu, Yekini
Médium: Journal Article
Jazyk:angličtina
Vydáno: Singapore Springer Nature Singapore 01.07.2025
Springer Nature B.V
Vydání:English Ed.
Témata:
ISSN:0252-9602, 1572-9087
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Several results on iterative methods for equilibrium problems have been proposed and studied in the literature. Most of these results are obtained when the associated bifunction of the equilibrium problem is either a monotone or pseudomonotone operator. Results on iterative methods for equilibrium problems without monotonicity conditions on the bifunction are still few in the literature. In this paper, we study equilibrium problems for which the underlined bifunction is not assumed any form of monotonicity. We propose two weakly convergent iterative algorithms and one strongly convergent algorithm. We obtain our convergence results without assuming either monotonicity or pseudomonotonicity condition on the bifunction. Our proposed algorithms are tested numerically to be more efficient and faster than some few available algorithms for equilibrium problems without monotonicity in the literature.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0252-9602
1572-9087
DOI:10.1007/s10473-025-0423-0