On Approximation Complexity in Average Case Setting for Tensor Degrees of Random Processes

We consider a random field with a zero mean and a continuous covariance function that is a d -tensor degree of a second-order random process. The average case approximation complexity of a given random field is defined as the minimal number of evaluations of linear functionals needed to approximate...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Vestnik, St. Petersburg University. Mathematics Ročník 58; číslo 1; s. 59 - 70
Hlavní autoři: Pyatkin, K. A., Khartov, A. A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Moscow Pleiades Publishing 01.03.2025
Springer Nature B.V
Témata:
ISSN:1063-4541, 1934-7855
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We consider a random field with a zero mean and a continuous covariance function that is a d -tensor degree of a second-order random process. The average case approximation complexity of a given random field is defined as the minimal number of evaluations of linear functionals needed to approximate the field with a relative r.m.s. error not exceeding a given threshold ε. This paper gives an upper estimate for that is always valid (without any criteria) for any ε and d . The logarithm of this estimate is in well agreement with the asymptotics obtained by us as d → ∞ with a threshold ε = ε d , which can rather quickly converge to zero as d → ∞. The estimate and the asymptotics complement and generalize the results obtained by Lifshits and Tulyakova as well as by Kravchenko and Khartov in this direction.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1063-4541
1934-7855
DOI:10.1134/S1063454125700074