On Approximation Complexity in Average Case Setting for Tensor Degrees of Random Processes

We consider a random field with a zero mean and a continuous covariance function that is a d -tensor degree of a second-order random process. The average case approximation complexity of a given random field is defined as the minimal number of evaluations of linear functionals needed to approximate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Vestnik, St. Petersburg University. Mathematics Jg. 58; H. 1; S. 59 - 70
Hauptverfasser: Pyatkin, K. A., Khartov, A. A.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Moscow Pleiades Publishing 01.03.2025
Springer Nature B.V
Schlagworte:
ISSN:1063-4541, 1934-7855
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider a random field with a zero mean and a continuous covariance function that is a d -tensor degree of a second-order random process. The average case approximation complexity of a given random field is defined as the minimal number of evaluations of linear functionals needed to approximate the field with a relative r.m.s. error not exceeding a given threshold ε. This paper gives an upper estimate for that is always valid (without any criteria) for any ε and d . The logarithm of this estimate is in well agreement with the asymptotics obtained by us as d → ∞ with a threshold ε = ε d , which can rather quickly converge to zero as d → ∞. The estimate and the asymptotics complement and generalize the results obtained by Lifshits and Tulyakova as well as by Kravchenko and Khartov in this direction.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1063-4541
1934-7855
DOI:10.1134/S1063454125700074