Optimality Conditions for Interval-Valued Optimization Problems on Riemannian Manifolds Under a Total Order Relation

This article explores fundamental properties of convex interval-valued functions defined on Riemannian manifolds. The study employs generalized Hukuhara directional differentiability to derive KKT-type optimality conditions for an interval-valued optimization problem on Riemannian manifolds. Based o...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of optimization theory and applications Ročník 205; číslo 1; s. 6
Hlavní autoři: Bhat, Hilal Ahmad, Iqbal, Akhlad, Aftab, Mahwash
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.04.2025
Springer Nature B.V
Témata:
ISSN:0022-3239, 1573-2878
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This article explores fundamental properties of convex interval-valued functions defined on Riemannian manifolds. The study employs generalized Hukuhara directional differentiability to derive KKT-type optimality conditions for an interval-valued optimization problem on Riemannian manifolds. Based on the type of functions involved in optimization problems, we consider the following cases: objective function as well as constraints are real-valued; objective function is interval-valued and constraints are real-valued; objective function as well as constraints are interval-valued. The whole theory is justified with the help of examples. The order relation that we use throughout the paper is a total order relation defined on the collection of all closed and bounded intervals in R .
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0022-3239
1573-2878
DOI:10.1007/s10957-025-02618-3