Optimality Conditions for Interval-Valued Optimization Problems on Riemannian Manifolds Under a Total Order Relation
This article explores fundamental properties of convex interval-valued functions defined on Riemannian manifolds. The study employs generalized Hukuhara directional differentiability to derive KKT-type optimality conditions for an interval-valued optimization problem on Riemannian manifolds. Based o...
Saved in:
| Published in: | Journal of optimization theory and applications Vol. 205; no. 1; p. 6 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.04.2025
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0022-3239, 1573-2878 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This article explores fundamental properties of convex interval-valued functions defined on Riemannian manifolds. The study employs generalized Hukuhara directional differentiability to derive KKT-type optimality conditions for an interval-valued optimization problem on Riemannian manifolds. Based on the type of functions involved in optimization problems, we consider the following cases: objective function as well as constraints are real-valued; objective function is interval-valued and constraints are real-valued; objective function as well as constraints are interval-valued. The whole theory is justified with the help of examples. The order relation that we use throughout the paper is a total order relation defined on the collection of all closed and bounded intervals in
R
. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0022-3239 1573-2878 |
| DOI: | 10.1007/s10957-025-02618-3 |