Optimality Conditions for Interval-Valued Optimization Problems on Riemannian Manifolds Under a Total Order Relation
This article explores fundamental properties of convex interval-valued functions defined on Riemannian manifolds. The study employs generalized Hukuhara directional differentiability to derive KKT-type optimality conditions for an interval-valued optimization problem on Riemannian manifolds. Based o...
Gespeichert in:
| Veröffentlicht in: | Journal of optimization theory and applications Jg. 205; H. 1; S. 6 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.04.2025
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0022-3239, 1573-2878 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | This article explores fundamental properties of convex interval-valued functions defined on Riemannian manifolds. The study employs generalized Hukuhara directional differentiability to derive KKT-type optimality conditions for an interval-valued optimization problem on Riemannian manifolds. Based on the type of functions involved in optimization problems, we consider the following cases: objective function as well as constraints are real-valued; objective function is interval-valued and constraints are real-valued; objective function as well as constraints are interval-valued. The whole theory is justified with the help of examples. The order relation that we use throughout the paper is a total order relation defined on the collection of all closed and bounded intervals in
R
. |
|---|---|
| AbstractList | This article explores fundamental properties of convex interval-valued functions defined on Riemannian manifolds. The study employs generalized Hukuhara directional differentiability to derive KKT-type optimality conditions for an interval-valued optimization problem on Riemannian manifolds. Based on the type of functions involved in optimization problems, we consider the following cases: objective function as well as constraints are real-valued; objective function is interval-valued and constraints are real-valued; objective function as well as constraints are interval-valued. The whole theory is justified with the help of examples. The order relation that we use throughout the paper is a total order relation defined on the collection of all closed and bounded intervals in
R
. This article explores fundamental properties of convex interval-valued functions defined on Riemannian manifolds. The study employs generalized Hukuhara directional differentiability to derive KKT-type optimality conditions for an interval-valued optimization problem on Riemannian manifolds. Based on the type of functions involved in optimization problems, we consider the following cases: objective function as well as constraints are real-valued; objective function is interval-valued and constraints are real-valued; objective function as well as constraints are interval-valued. The whole theory is justified with the help of examples. The order relation that we use throughout the paper is a total order relation defined on the collection of all closed and bounded intervals in R. |
| ArticleNumber | 6 |
| Author | Iqbal, Akhlad Aftab, Mahwash Bhat, Hilal Ahmad |
| Author_xml | – sequence: 1 givenname: Hilal Ahmad orcidid: 0000-0002-8712-3905 surname: Bhat fullname: Bhat, Hilal Ahmad organization: Department of Mathematics, Aligarh Muslim University – sequence: 2 givenname: Akhlad orcidid: 0000-0003-1932-2782 surname: Iqbal fullname: Iqbal, Akhlad email: akhlad6star@gmail.com organization: Department of Mathematics, Aligarh Muslim University – sequence: 3 givenname: Mahwash orcidid: 0009-0008-0561-9079 surname: Aftab fullname: Aftab, Mahwash organization: Department of Mathematics, Aligarh Muslim University |
| BookMark | eNp9kE1LAzEQhoMo2Fb_gKeA59V87iZHKX4UKpXSeg3ZTSJbtklNtkL99aZdwZuHYWbgeWfgGYNzH7wF4AajO4xQdZ8wkrwqEOG5SiwKegZGmFe0IKIS52CEECEFJVRegnFKG4SQFBUbgX6x69ut7tr-AKfBm7Zvg0_QhQhnvrfxS3fFu-721sAT2X7rIwHfYqg7u00wz8vWbrX3rfbwVfvWhc4kuPbGRqjhKvS6g4t43Ja2O6WvwIXTXbLXv30C1k-Pq-lLMV88z6YP86IhFeoLVnNDpKRMa8QdM5zjuq4QpaZxyAghtUGWW0pYI1zZUCaZthprLC13tJR0Am6Hu7sYPvc29WoT9tHnl4rikkvJiOCZIgPVxJBStE7tYlYSDwojdbSrBrsq21Unu4rmEB1CKcP-w8a_0_-kfgB_uIB_ |
| Cites_doi | 10.1016/j.cie.2020.106634 10.1007/s10700-013-9156-y 10.1016/j.ejor.2008.03.012 10.1016/j.ejor.2005.09.007 10.1007/s10957-011-9921-4 10.1016/j.na.2011.07.005 10.1016/j.cie.2014.05.014 10.1007/978-3-319-55084-8 10.1016/j.na.2008.12.005 10.1515/9783110361629 10.1090/mmono/149 10.1051/ro/2024157 10.1080/02331934.2024.2447996 10.1080/02331934.2020.1810248 10.1007/978-1-4615-6357-0 10.1080/02331934.2012.745531 10.1007/s10957-012-0052-3 10.1137/1.9781611970906 10.1007/s10957-010-9688-z 10.1016/0377-2217(90)90375-L 10.1007/BF00940467 10.1016/j.ejor.2016.03.042 10.1137/09075367X 10.1080/02331934.2024.2375424 10.1007/s10898-003-3780-y |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. Apr 2025 |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. Apr 2025 |
| DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1007/s10957-025-02618-3 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics |
| EISSN | 1573-2878 |
| ExternalDocumentID | 10_1007_s10957_025_02618_3 |
| GroupedDBID | -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 7WY 88I 8AO 8FE 8FG 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBE ABDPE ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADHKG ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GROUPED_ABI_INFORM_RESEARCH GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF H~9 I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M2O M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM OVD P19 P2P P62 P9R PF0 PHGZT PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC TUS TWZ U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 VOH W23 W48 WH7 WK8 YLTOR YQT Z45 ZCG ZMTXR ZWQNP ZY4 ~EX AAYXX ABBRH ABFSG ABRTQ ACSTC ADXHL AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR CITATION PHGZM PQGLB 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c270t-4b5d29934aa05f4d551bb7033dcf0d889ad0e5e324c8f6c3494aea1a19e5f3693 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001419166200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0022-3239 |
| IngestDate | Wed Nov 05 08:27:40 EST 2025 Sat Nov 29 08:04:04 EST 2025 Thu Mar 20 02:10:39 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Generalized Hukuhara directional derivative Riemannian manifolds Interval-valued functions Convexity KKT optimality conditions |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c270t-4b5d29934aa05f4d551bb7033dcf0d889ad0e5e324c8f6c3494aea1a19e5f3693 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0008-0561-9079 0000-0003-1932-2782 0000-0002-8712-3905 |
| PQID | 3165994285 |
| PQPubID | 48247 |
| ParticipantIDs | proquest_journals_3165994285 crossref_primary_10_1007_s10957_025_02618_3 springer_journals_10_1007_s10957_025_02618_3 |
| PublicationCentury | 2000 |
| PublicationDate | 20250400 2025-04-00 20250401 |
| PublicationDateYYYYMMDD | 2025-04-01 |
| PublicationDate_xml | – month: 4 year: 2025 text: 20250400 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Journal of optimization theory and applications |
| PublicationTitleAbbrev | J Optim Theory Appl |
| PublicationYear | 2025 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | A Iqbal (2618_CR13) 2012; 155 HC Wu (2618_CR32) 2009; 196 C Li (2618_CR15) 2011; 21 H Ishibuchi (2618_CR12) 1990; 48 R-G Gabriel (2618_CR11) 2018; 22 HC Wu (2618_CR31) 2007; 176 D Singh (2618_CR26) 2016; 254 G Alefeld (2618_CR1) 1983 OP Ferreira (2618_CR10) 2005; 31 RE Moore (2618_CR17) 1979 T Rapcsak (2618_CR21) 1991; 69 LT Nguyen (2618_CR18) 2024 RE Moore (2618_CR16) 1966 2618_CR22 2618_CR23 C Udriste (2618_CR29) 1994 S-L Chen (2618_CR9) 2020 L Serge (2618_CR24) 1999 LW Tu (2618_CR28) 2017 M Bacak (2618_CR2) 2014 D Singh (2618_CR25) 2014; 5 AK Bhunia (2618_CR7) 2014; 74 SM Rahman (2618_CR20) 2020; 147 HA Bhat (2618_CR5) 2025 JM Wang (2618_CR30) 2010; 146 2618_CR19 L Stefanini (2618_CR27) 2009; 71 2618_CR6 Y Chalco-Cano (2618_CR8) 2013; 12 A Iqbal (2618_CR14) 2011; 74 GC Bento (2618_CR3) 2012; 152 GC Bento (2618_CR4) 2015; 64 |
| References_xml | – volume: 147 year: 2020 ident: 2618_CR20 publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2020.106634 – volume: 12 start-page: 305 year: 2013 ident: 2618_CR8 publication-title: Fuzzy Optim. Decis. Making doi: 10.1007/s10700-013-9156-y – volume: 196 start-page: 49 year: 2009 ident: 2618_CR32 publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2008.03.012 – volume: 176 start-page: 46 year: 2007 ident: 2618_CR31 publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2005.09.007 – volume: 152 start-page: 773 year: 2012 ident: 2618_CR3 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-011-9921-4 – volume: 74 start-page: 6805 year: 2011 ident: 2618_CR14 publication-title: Nonlinear Anal. Theory Methods Appl. doi: 10.1016/j.na.2011.07.005 – volume: 74 start-page: 169 year: 2014 ident: 2618_CR7 publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2014.05.014 – volume-title: Differential Geometry: Connections, Curvature, and Characteristic Classes year: 2017 ident: 2618_CR28 doi: 10.1007/978-3-319-55084-8 – volume-title: Interval Analysis year: 1966 ident: 2618_CR16 – volume: 71 start-page: 1311 year: 2009 ident: 2618_CR27 publication-title: Nonlinear Anal. Theory Methods Appl. doi: 10.1016/j.na.2008.12.005 – volume-title: Introduction to Interval Computations year: 1983 ident: 2618_CR1 – year: 2014 ident: 2618_CR2 publication-title: De Gruyter Ser. Nonlinear Anal. Appl. doi: 10.1515/9783110361629 – volume: 22 start-page: 1245 year: 2018 ident: 2618_CR11 publication-title: Taiwan. J. Math. – ident: 2618_CR23 doi: 10.1090/mmono/149 – ident: 2618_CR6 doi: 10.1051/ro/2024157 – year: 2025 ident: 2618_CR5 publication-title: Optimization doi: 10.1080/02331934.2024.2447996 – year: 2020 ident: 2618_CR9 publication-title: Optimization doi: 10.1080/02331934.2020.1810248 – ident: 2618_CR22 doi: 10.1007/978-1-4615-6357-0 – volume-title: Convex Functions and Optimization Methods on Riemanian Manifolds, Mathematics and its Applications year: 1994 ident: 2618_CR29 – volume: 64 start-page: 289 year: 2015 ident: 2618_CR4 publication-title: Optimization doi: 10.1080/02331934.2012.745531 – volume: 155 start-page: 239 issue: 1 year: 2012 ident: 2618_CR13 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-012-0052-3 – volume: 5 start-page: 91 year: 2014 ident: 2618_CR25 publication-title: J. Nonlinear Anal. Optim. – volume-title: Method and Applications of Interval Analysis year: 1979 ident: 2618_CR17 doi: 10.1137/1.9781611970906 – volume: 146 start-page: 691 year: 2010 ident: 2618_CR30 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-010-9688-z – volume: 48 start-page: 219 year: 1990 ident: 2618_CR12 publication-title: Eur. J. Oper. Res. doi: 10.1016/0377-2217(90)90375-L – ident: 2618_CR19 – volume: 69 start-page: 169 year: 1991 ident: 2618_CR21 publication-title: J. Optim. Theory Appl. doi: 10.1007/BF00940467 – volume: 254 start-page: 29 issue: 1 year: 2016 ident: 2618_CR26 publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2016.03.042 – volume: 21 start-page: 1523 year: 2011 ident: 2618_CR15 publication-title: SIAM J. Optim. doi: 10.1137/09075367X – volume-title: Fundamentals of Differential Geometry year: 1999 ident: 2618_CR24 – year: 2024 ident: 2618_CR18 publication-title: Optimization doi: 10.1080/02331934.2024.2375424 – volume: 31 start-page: 133 year: 2005 ident: 2618_CR10 publication-title: J. Global Optim. doi: 10.1007/s10898-003-3780-y |
| SSID | ssj0009874 |
| Score | 2.4165924 |
| Snippet | This article explores fundamental properties of convex interval-valued functions defined on Riemannian manifolds. The study employs generalized Hukuhara... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 6 |
| SubjectTerms | Applications of Mathematics Calculus of Variations and Optimal Control; Optimization Constraints Convex analysis Decision making Engineering Euclidean space Mathematics Mathematics and Statistics Operations Research/Decision Theory Optimization Optimization techniques Random variables Riemann manifold Theory of Computation Topological manifolds |
| Title | Optimality Conditions for Interval-Valued Optimization Problems on Riemannian Manifolds Under a Total Order Relation |
| URI | https://link.springer.com/article/10.1007/s10957-025-02618-3 https://www.proquest.com/docview/3165994285 |
| Volume | 205 |
| WOSCitedRecordID | wos001419166200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLink Contemporary customDbUrl: eissn: 1573-2878 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009874 issn: 0022-3239 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagMMDAG1EoyAMbWErjuLFHVFEx0IegVN0ix3akSiVBTcrv5-wmpCAYYEsU-xT5Lnefc77vELq23NehUIooFcckEJ4iXNninIAzbRLA0NqRuD6GgwGfTsWoLArLq9PuVUrSeeq1YjfBQmLbr9p9Ayd0E20xyzZj9-jPk5pql1fcyz6hPhVlqczPMr6GoxpjfkuLumjT2__fex6gvRJd4ruVORyiDZMeod01zkG4638StebHqBiCy3h1WBx3M5u-tmaIAcli968Q7JBM5HxpNHYjy6pNPFr1ockxXD_NQFyagp3hvkxnSTbXOXb9lLDE4wzQPR5agk9cHbw7QS-9-3H3gZSNGIjyQ68gQcw0hC0aSOmxJNCAsuIYXAXVKvE050JqzzAD2EzxpKMs4400si3bwrCEdgQ9RY00S80ZwiZRyoN5PFYsABkS5oTCMg7FQgTGb6KbSh_R24pvI6qZle3KRrCykVvZiDZRq1JZVH57eUTbHQayfM6a6LZSUf34d2nnfxt-gXZ8p2V7jKeFGsViaS7RtnovZvniytnkBxij3LQ |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZ4ScCBN2I8c-AGkbqmWZMjQkxDbAPBmHar0iSVJo0O0cHvx8laBggOcGvVxKpi1_5Sx58BTh33dSy1plqnKY1koKnQrjgnEtzYDDG08SSu7bjbFYOBvCuLworqtHuVkvSe-lOxm-Qxde1X3b5BUDYPi5Frs-P26A_9GdWuqLiXQ8pCJstSmZ9lfA1HM4z5LS3qo01z_X_vuQFrJbokF1Nz2IQ5m2_B6ifOQbzrfBC1FtswuUWX8eSxOLkcu_S1M0OCSJb4f4Voh7SvRq_WED-yrNokd9M-NAXB6_shistztDPSUfkwG49MQXw_JaJIb4zontw6gk9SHbzbgcfmVe-yRctGDFSHcTChUcoNhi0WKRXwLDKIstIUXQUzOguMEFKZwHKL2EyLrKEd442yqq7q0vKMNSTbhYV8nNs9IDbTOsB5ItU8QhkK58TSMQ6lUkY2rMFZpY_kecq3kcyYld3KJriyiV_ZhNXgsFJZUn57RcLqDY6yQsFrcF6paPb4d2n7fxt-AsutXqedtK-7NwewEnqNuyM9h7AweXm1R7Ck3ybD4uXY2-c7ef7fmA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZ4CcGBN2I8c-AGEV3TrMkRARMIGBMvcavSJJUmjQ7Rwu_HyVo2EBwQt1ZNrMp2ky-1_Rlg33Ffx1JrqnWa0kgGmgrtinMiwY3NEEMbT-J6FXc64ulJdseq-H22ex2SHNY0OJamvDx6MdnRWOGb5DF1rVjdGUJQNgnTEZ5kXFLX7d3jiHZX1DzMIWUhk1XZzM8yvm5NI7z5LUTqd5724v_feQkWKtRJjodusgwTNl-B-TEuQry7_iRwLVahvMGl5NljdHIycGFt554EES7x_xDRP-mj6r9ZQ_zIqpqTdIf9aQqC17c9FJfn6H_kWuW9bNA3BfF9logi9wNE_eTGEX-SOiFvDR7aZ_cn57Rq0EB1GAcljVJucDtjkVIBzyKD6CtNcQlhRmeBEUIqE1huEbNpkbW0Y8JRVjVVU1qesZZk6zCVD3K7AcRmWgc4T6SaRyhD4ZxYOiaiVMrIhg04qG2TvAx5OJIR47LTbIKaTbxmE9aA7dp8SfVNFglrtjjKCgVvwGFtrtHj36Vt_m34Hsx2T9vJ1UXncgvmQm9wl-mzDVPl65vdgRn9XvaK113vqh-lU-h8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimality+Conditions+for+Interval-Valued+Optimization+Problems+on+Riemannian+Manifolds+Under+a+Total+Order+Relation&rft.jtitle=Journal+of+optimization+theory+and+applications&rft.au=Bhat%2C+Hilal+Ahmad&rft.au=Iqbal%2C+Akhlad&rft.au=Aftab%2C+Mahwash&rft.date=2025-04-01&rft.issn=0022-3239&rft.eissn=1573-2878&rft.volume=205&rft.issue=1&rft_id=info:doi/10.1007%2Fs10957-025-02618-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10957_025_02618_3 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3239&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3239&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3239&client=summon |