Optimality Conditions for Interval-Valued Optimization Problems on Riemannian Manifolds Under a Total Order Relation

This article explores fundamental properties of convex interval-valued functions defined on Riemannian manifolds. The study employs generalized Hukuhara directional differentiability to derive KKT-type optimality conditions for an interval-valued optimization problem on Riemannian manifolds. Based o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of optimization theory and applications Jg. 205; H. 1; S. 6
Hauptverfasser: Bhat, Hilal Ahmad, Iqbal, Akhlad, Aftab, Mahwash
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.04.2025
Springer Nature B.V
Schlagworte:
ISSN:0022-3239, 1573-2878
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This article explores fundamental properties of convex interval-valued functions defined on Riemannian manifolds. The study employs generalized Hukuhara directional differentiability to derive KKT-type optimality conditions for an interval-valued optimization problem on Riemannian manifolds. Based on the type of functions involved in optimization problems, we consider the following cases: objective function as well as constraints are real-valued; objective function is interval-valued and constraints are real-valued; objective function as well as constraints are interval-valued. The whole theory is justified with the help of examples. The order relation that we use throughout the paper is a total order relation defined on the collection of all closed and bounded intervals in R .
AbstractList This article explores fundamental properties of convex interval-valued functions defined on Riemannian manifolds. The study employs generalized Hukuhara directional differentiability to derive KKT-type optimality conditions for an interval-valued optimization problem on Riemannian manifolds. Based on the type of functions involved in optimization problems, we consider the following cases: objective function as well as constraints are real-valued; objective function is interval-valued and constraints are real-valued; objective function as well as constraints are interval-valued. The whole theory is justified with the help of examples. The order relation that we use throughout the paper is a total order relation defined on the collection of all closed and bounded intervals in R .
This article explores fundamental properties of convex interval-valued functions defined on Riemannian manifolds. The study employs generalized Hukuhara directional differentiability to derive KKT-type optimality conditions for an interval-valued optimization problem on Riemannian manifolds. Based on the type of functions involved in optimization problems, we consider the following cases: objective function as well as constraints are real-valued; objective function is interval-valued and constraints are real-valued; objective function as well as constraints are interval-valued. The whole theory is justified with the help of examples. The order relation that we use throughout the paper is a total order relation defined on the collection of all closed and bounded intervals in R.
ArticleNumber 6
Author Iqbal, Akhlad
Aftab, Mahwash
Bhat, Hilal Ahmad
Author_xml – sequence: 1
  givenname: Hilal Ahmad
  orcidid: 0000-0002-8712-3905
  surname: Bhat
  fullname: Bhat, Hilal Ahmad
  organization: Department of Mathematics, Aligarh Muslim University
– sequence: 2
  givenname: Akhlad
  orcidid: 0000-0003-1932-2782
  surname: Iqbal
  fullname: Iqbal, Akhlad
  email: akhlad6star@gmail.com
  organization: Department of Mathematics, Aligarh Muslim University
– sequence: 3
  givenname: Mahwash
  orcidid: 0009-0008-0561-9079
  surname: Aftab
  fullname: Aftab, Mahwash
  organization: Department of Mathematics, Aligarh Muslim University
BookMark eNp9kE1LAzEQhoMo2Fb_gKeA59V87iZHKX4UKpXSeg3ZTSJbtklNtkL99aZdwZuHYWbgeWfgGYNzH7wF4AajO4xQdZ8wkrwqEOG5SiwKegZGmFe0IKIS52CEECEFJVRegnFKG4SQFBUbgX6x69ut7tr-AKfBm7Zvg0_QhQhnvrfxS3fFu-721sAT2X7rIwHfYqg7u00wz8vWbrX3rfbwVfvWhc4kuPbGRqjhKvS6g4t43Ja2O6WvwIXTXbLXv30C1k-Pq-lLMV88z6YP86IhFeoLVnNDpKRMa8QdM5zjuq4QpaZxyAghtUGWW0pYI1zZUCaZthprLC13tJR0Am6Hu7sYPvc29WoT9tHnl4rikkvJiOCZIgPVxJBStE7tYlYSDwojdbSrBrsq21Unu4rmEB1CKcP-w8a_0_-kfgB_uIB_
Cites_doi 10.1016/j.cie.2020.106634
10.1007/s10700-013-9156-y
10.1016/j.ejor.2008.03.012
10.1016/j.ejor.2005.09.007
10.1007/s10957-011-9921-4
10.1016/j.na.2011.07.005
10.1016/j.cie.2014.05.014
10.1007/978-3-319-55084-8
10.1016/j.na.2008.12.005
10.1515/9783110361629
10.1090/mmono/149
10.1051/ro/2024157
10.1080/02331934.2024.2447996
10.1080/02331934.2020.1810248
10.1007/978-1-4615-6357-0
10.1080/02331934.2012.745531
10.1007/s10957-012-0052-3
10.1137/1.9781611970906
10.1007/s10957-010-9688-z
10.1016/0377-2217(90)90375-L
10.1007/BF00940467
10.1016/j.ejor.2016.03.042
10.1137/09075367X
10.1080/02331934.2024.2375424
10.1007/s10898-003-3780-y
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. Apr 2025
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. Apr 2025
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1007/s10957-025-02618-3
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1573-2878
ExternalDocumentID 10_1007_s10957_025_02618_3
GroupedDBID -Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
7WY
88I
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBE
ABDPE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADHKG
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GROUPED_ABI_INFORM_RESEARCH
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M2O
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9R
PF0
PHGZT
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
TWZ
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
VOH
W23
W48
WH7
WK8
YLTOR
YQT
Z45
ZCG
ZMTXR
ZWQNP
ZY4
~EX
AAYXX
ABBRH
ABFSG
ABRTQ
ACSTC
ADXHL
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
CITATION
PHGZM
PQGLB
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c270t-4b5d29934aa05f4d551bb7033dcf0d889ad0e5e324c8f6c3494aea1a19e5f3693
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001419166200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-3239
IngestDate Wed Nov 05 08:27:40 EST 2025
Sat Nov 29 08:04:04 EST 2025
Thu Mar 20 02:10:39 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Generalized Hukuhara directional derivative
Riemannian manifolds
Interval-valued functions
Convexity
KKT optimality conditions
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-4b5d29934aa05f4d551bb7033dcf0d889ad0e5e324c8f6c3494aea1a19e5f3693
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0008-0561-9079
0000-0003-1932-2782
0000-0002-8712-3905
PQID 3165994285
PQPubID 48247
ParticipantIDs proquest_journals_3165994285
crossref_primary_10_1007_s10957_025_02618_3
springer_journals_10_1007_s10957_025_02618_3
PublicationCentury 2000
PublicationDate 20250400
2025-04-00
20250401
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 4
  year: 2025
  text: 20250400
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of optimization theory and applications
PublicationTitleAbbrev J Optim Theory Appl
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References A Iqbal (2618_CR13) 2012; 155
HC Wu (2618_CR32) 2009; 196
C Li (2618_CR15) 2011; 21
H Ishibuchi (2618_CR12) 1990; 48
R-G Gabriel (2618_CR11) 2018; 22
HC Wu (2618_CR31) 2007; 176
D Singh (2618_CR26) 2016; 254
G Alefeld (2618_CR1) 1983
OP Ferreira (2618_CR10) 2005; 31
RE Moore (2618_CR17) 1979
T Rapcsak (2618_CR21) 1991; 69
LT Nguyen (2618_CR18) 2024
RE Moore (2618_CR16) 1966
2618_CR22
2618_CR23
C Udriste (2618_CR29) 1994
S-L Chen (2618_CR9) 2020
L Serge (2618_CR24) 1999
LW Tu (2618_CR28) 2017
M Bacak (2618_CR2) 2014
D Singh (2618_CR25) 2014; 5
AK Bhunia (2618_CR7) 2014; 74
SM Rahman (2618_CR20) 2020; 147
HA Bhat (2618_CR5) 2025
JM Wang (2618_CR30) 2010; 146
2618_CR19
L Stefanini (2618_CR27) 2009; 71
2618_CR6
Y Chalco-Cano (2618_CR8) 2013; 12
A Iqbal (2618_CR14) 2011; 74
GC Bento (2618_CR3) 2012; 152
GC Bento (2618_CR4) 2015; 64
References_xml – volume: 147
  year: 2020
  ident: 2618_CR20
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2020.106634
– volume: 12
  start-page: 305
  year: 2013
  ident: 2618_CR8
  publication-title: Fuzzy Optim. Decis. Making
  doi: 10.1007/s10700-013-9156-y
– volume: 196
  start-page: 49
  year: 2009
  ident: 2618_CR32
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2008.03.012
– volume: 176
  start-page: 46
  year: 2007
  ident: 2618_CR31
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2005.09.007
– volume: 152
  start-page: 773
  year: 2012
  ident: 2618_CR3
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-011-9921-4
– volume: 74
  start-page: 6805
  year: 2011
  ident: 2618_CR14
  publication-title: Nonlinear Anal. Theory Methods Appl.
  doi: 10.1016/j.na.2011.07.005
– volume: 74
  start-page: 169
  year: 2014
  ident: 2618_CR7
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2014.05.014
– volume-title: Differential Geometry: Connections, Curvature, and Characteristic Classes
  year: 2017
  ident: 2618_CR28
  doi: 10.1007/978-3-319-55084-8
– volume-title: Interval Analysis
  year: 1966
  ident: 2618_CR16
– volume: 71
  start-page: 1311
  year: 2009
  ident: 2618_CR27
  publication-title: Nonlinear Anal. Theory Methods Appl.
  doi: 10.1016/j.na.2008.12.005
– volume-title: Introduction to Interval Computations
  year: 1983
  ident: 2618_CR1
– year: 2014
  ident: 2618_CR2
  publication-title: De Gruyter Ser. Nonlinear Anal. Appl.
  doi: 10.1515/9783110361629
– volume: 22
  start-page: 1245
  year: 2018
  ident: 2618_CR11
  publication-title: Taiwan. J. Math.
– ident: 2618_CR23
  doi: 10.1090/mmono/149
– ident: 2618_CR6
  doi: 10.1051/ro/2024157
– year: 2025
  ident: 2618_CR5
  publication-title: Optimization
  doi: 10.1080/02331934.2024.2447996
– year: 2020
  ident: 2618_CR9
  publication-title: Optimization
  doi: 10.1080/02331934.2020.1810248
– ident: 2618_CR22
  doi: 10.1007/978-1-4615-6357-0
– volume-title: Convex Functions and Optimization Methods on Riemanian Manifolds, Mathematics and its Applications
  year: 1994
  ident: 2618_CR29
– volume: 64
  start-page: 289
  year: 2015
  ident: 2618_CR4
  publication-title: Optimization
  doi: 10.1080/02331934.2012.745531
– volume: 155
  start-page: 239
  issue: 1
  year: 2012
  ident: 2618_CR13
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-012-0052-3
– volume: 5
  start-page: 91
  year: 2014
  ident: 2618_CR25
  publication-title: J. Nonlinear Anal. Optim.
– volume-title: Method and Applications of Interval Analysis
  year: 1979
  ident: 2618_CR17
  doi: 10.1137/1.9781611970906
– volume: 146
  start-page: 691
  year: 2010
  ident: 2618_CR30
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-010-9688-z
– volume: 48
  start-page: 219
  year: 1990
  ident: 2618_CR12
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/0377-2217(90)90375-L
– ident: 2618_CR19
– volume: 69
  start-page: 169
  year: 1991
  ident: 2618_CR21
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF00940467
– volume: 254
  start-page: 29
  issue: 1
  year: 2016
  ident: 2618_CR26
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2016.03.042
– volume: 21
  start-page: 1523
  year: 2011
  ident: 2618_CR15
  publication-title: SIAM J. Optim.
  doi: 10.1137/09075367X
– volume-title: Fundamentals of Differential Geometry
  year: 1999
  ident: 2618_CR24
– year: 2024
  ident: 2618_CR18
  publication-title: Optimization
  doi: 10.1080/02331934.2024.2375424
– volume: 31
  start-page: 133
  year: 2005
  ident: 2618_CR10
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-003-3780-y
SSID ssj0009874
Score 2.4165924
Snippet This article explores fundamental properties of convex interval-valued functions defined on Riemannian manifolds. The study employs generalized Hukuhara...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 6
SubjectTerms Applications of Mathematics
Calculus of Variations and Optimal Control; Optimization
Constraints
Convex analysis
Decision making
Engineering
Euclidean space
Mathematics
Mathematics and Statistics
Operations Research/Decision Theory
Optimization
Optimization techniques
Random variables
Riemann manifold
Theory of Computation
Topological manifolds
Title Optimality Conditions for Interval-Valued Optimization Problems on Riemannian Manifolds Under a Total Order Relation
URI https://link.springer.com/article/10.1007/s10957-025-02618-3
https://www.proquest.com/docview/3165994285
Volume 205
WOSCitedRecordID wos001419166200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink Contemporary
  customDbUrl:
  eissn: 1573-2878
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009874
  issn: 0022-3239
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagMMDAG1EoyAMbWErjuLFHVFEx0IegVN0ix3akSiVBTcrv5-wmpCAYYEsU-xT5Lnefc77vELq23NehUIooFcckEJ4iXNninIAzbRLA0NqRuD6GgwGfTsWoLArLq9PuVUrSeeq1YjfBQmLbr9p9Ayd0E20xyzZj9-jPk5pql1fcyz6hPhVlqczPMr6GoxpjfkuLumjT2__fex6gvRJd4ruVORyiDZMeod01zkG4638StebHqBiCy3h1WBx3M5u-tmaIAcli968Q7JBM5HxpNHYjy6pNPFr1ockxXD_NQFyagp3hvkxnSTbXOXb9lLDE4wzQPR5agk9cHbw7QS-9-3H3gZSNGIjyQ68gQcw0hC0aSOmxJNCAsuIYXAXVKvE050JqzzAD2EzxpKMs4400si3bwrCEdgQ9RY00S80ZwiZRyoN5PFYsABkS5oTCMg7FQgTGb6KbSh_R24pvI6qZle3KRrCykVvZiDZRq1JZVH57eUTbHQayfM6a6LZSUf34d2nnfxt-gXZ8p2V7jKeFGsViaS7RtnovZvniytnkBxij3LQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZ4ScCBN2I8c-AGkbqmWZMjQkxDbAPBmHar0iSVJo0O0cHvx8laBggOcGvVxKpi1_5Sx58BTh33dSy1plqnKY1koKnQrjgnEtzYDDG08SSu7bjbFYOBvCuLworqtHuVkvSe-lOxm-Qxde1X3b5BUDYPi5Frs-P26A_9GdWuqLiXQ8pCJstSmZ9lfA1HM4z5LS3qo01z_X_vuQFrJbokF1Nz2IQ5m2_B6ifOQbzrfBC1FtswuUWX8eSxOLkcu_S1M0OCSJb4f4Voh7SvRq_WED-yrNokd9M-NAXB6_shistztDPSUfkwG49MQXw_JaJIb4zontw6gk9SHbzbgcfmVe-yRctGDFSHcTChUcoNhi0WKRXwLDKIstIUXQUzOguMEFKZwHKL2EyLrKEd442yqq7q0vKMNSTbhYV8nNs9IDbTOsB5ItU8QhkK58TSMQ6lUkY2rMFZpY_kecq3kcyYld3KJriyiV_ZhNXgsFJZUn57RcLqDY6yQsFrcF6paPb4d2n7fxt-AsutXqedtK-7NwewEnqNuyM9h7AweXm1R7Ck3ybD4uXY2-c7ef7fmA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZ4CcGBN2I8c-AGEV3TrMkRARMIGBMvcavSJJUmjQ7Rwu_HyVo2EBwQt1ZNrMp2ky-1_Rlg33Ffx1JrqnWa0kgGmgrtinMiwY3NEEMbT-J6FXc64ulJdseq-H22ex2SHNY0OJamvDx6MdnRWOGb5DF1rVjdGUJQNgnTEZ5kXFLX7d3jiHZX1DzMIWUhk1XZzM8yvm5NI7z5LUTqd5724v_feQkWKtRJjodusgwTNl-B-TEuQry7_iRwLVahvMGl5NljdHIycGFt554EES7x_xDRP-mj6r9ZQ_zIqpqTdIf9aQqC17c9FJfn6H_kWuW9bNA3BfF9logi9wNE_eTGEX-SOiFvDR7aZ_cn57Rq0EB1GAcljVJucDtjkVIBzyKD6CtNcQlhRmeBEUIqE1huEbNpkbW0Y8JRVjVVU1qesZZk6zCVD3K7AcRmWgc4T6SaRyhD4ZxYOiaiVMrIhg04qG2TvAx5OJIR47LTbIKaTbxmE9aA7dp8SfVNFglrtjjKCgVvwGFtrtHj36Vt_m34Hsx2T9vJ1UXncgvmQm9wl-mzDVPl65vdgRn9XvaK113vqh-lU-h8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimality+Conditions+for+Interval-Valued+Optimization+Problems+on+Riemannian+Manifolds+Under+a+Total+Order+Relation&rft.jtitle=Journal+of+optimization+theory+and+applications&rft.au=Bhat%2C+Hilal+Ahmad&rft.au=Iqbal%2C+Akhlad&rft.au=Aftab%2C+Mahwash&rft.date=2025-04-01&rft.issn=0022-3239&rft.eissn=1573-2878&rft.volume=205&rft.issue=1&rft_id=info:doi/10.1007%2Fs10957-025-02618-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10957_025_02618_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3239&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3239&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3239&client=summon