Artificial Viscosity Joint Spacetime Multigrid Method for Hamilton–Jacobi–Bellman and Kolmogorov–Fokker–Planck System Arising from Mean Field Games

In this paper, we study numerical solutions for the Hamilton-Jacobi-Bellman (HJB) and Kolmogorov–Fokker–Planck (KFP) equations arising from mean field games. In order to solve the nonlinear discretized systems efficiently, we propose a multigrid method. Our proposed multigrid method is developed on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of scientific computing Jg. 88; H. 1; S. 10
Hauptverfasser: Chen, Yangang, Wan, Justin W. L.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.07.2021
Springer Nature B.V
Schlagworte:
ISSN:0885-7474, 1573-7691
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study numerical solutions for the Hamilton-Jacobi-Bellman (HJB) and Kolmogorov–Fokker–Planck (KFP) equations arising from mean field games. In order to solve the nonlinear discretized systems efficiently, we propose a multigrid method. Our proposed multigrid method is developed on the joint spacetime and is a full approximation scheme (FAS). We consider hybrid full-semi coarsening and kernel preserving biased restriction to address the anisotropy in time and convections in space. The main novelty of this paper is that we propose adding artificial viscosity to the direct discretization coarse grid operators, such that the coarse grid error estimations are more accurate. We use Fourier analysis to illustrate the efficiency of our proposed multigrid method. Numerical experiments show that the convergence rate of the proposed multigrid method is mesh-independent and faster than the existing methods in the literature.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0885-7474
1573-7691
DOI:10.1007/s10915-021-01520-0