Artificial Viscosity Joint Spacetime Multigrid Method for Hamilton–Jacobi–Bellman and Kolmogorov–Fokker–Planck System Arising from Mean Field Games
In this paper, we study numerical solutions for the Hamilton-Jacobi-Bellman (HJB) and Kolmogorov–Fokker–Planck (KFP) equations arising from mean field games. In order to solve the nonlinear discretized systems efficiently, we propose a multigrid method. Our proposed multigrid method is developed on...
Gespeichert in:
| Veröffentlicht in: | Journal of scientific computing Jg. 88; H. 1; S. 10 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.07.2021
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0885-7474, 1573-7691 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | In this paper, we study numerical solutions for the Hamilton-Jacobi-Bellman (HJB) and Kolmogorov–Fokker–Planck (KFP) equations arising from mean field games. In order to solve the nonlinear discretized systems efficiently, we propose a multigrid method. Our proposed multigrid method is developed on the joint spacetime and is a full approximation scheme (FAS). We consider hybrid full-semi coarsening and kernel preserving biased restriction to address the anisotropy in time and convections in space. The main novelty of this paper is that we propose adding artificial viscosity to the direct discretization coarse grid operators, such that the coarse grid error estimations are more accurate. We use Fourier analysis to illustrate the efficiency of our proposed multigrid method. Numerical experiments show that the convergence rate of the proposed multigrid method is mesh-independent and faster than the existing methods in the literature. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0885-7474 1573-7691 |
| DOI: | 10.1007/s10915-021-01520-0 |