Inertial self-adaptive algorithms for solving non-smooth convex optimization problems

In this paper, for two different forms of non-smooth convex optimization problems, we investigate the self-adaptive algorithms with inertia acceleration. Firstly, we propose a self-adaptive proximal gradient algorithm with an inertial step. Under reasonable parameters, the strong convergence theorem...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Numerical algorithms Ročník 98; číslo 1; s. 133 - 163
Hlavní autoři: Chen, Xin, Duan, Peichao
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.01.2025
Springer Nature B.V
Témata:
ISSN:1017-1398, 1572-9265
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, for two different forms of non-smooth convex optimization problems, we investigate the self-adaptive algorithms with inertia acceleration. Firstly, we propose a self-adaptive proximal gradient algorithm with an inertial step. Under reasonable parameters, the strong convergence theorem is established. Secondly, we propose a self-adaptive split proximal algorithm with inertial acceleration. We prove that our algorithm converges strongly under suitable conditions. Notably, both inertial algorithms are extended to multi-step inertial version to accelerate the convergence of the algorithms. Finally, numerical results illustrate the performances of our algorithms.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1017-1398
1572-9265
DOI:10.1007/s11075-024-01788-x