Inertial self-adaptive algorithms for solving non-smooth convex optimization problems
In this paper, for two different forms of non-smooth convex optimization problems, we investigate the self-adaptive algorithms with inertia acceleration. Firstly, we propose a self-adaptive proximal gradient algorithm with an inertial step. Under reasonable parameters, the strong convergence theorem...
Uloženo v:
| Vydáno v: | Numerical algorithms Ročník 98; číslo 1; s. 133 - 163 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.01.2025
Springer Nature B.V |
| Témata: | |
| ISSN: | 1017-1398, 1572-9265 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, for two different forms of non-smooth convex optimization problems, we investigate the self-adaptive algorithms with inertia acceleration. Firstly, we propose a self-adaptive proximal gradient algorithm with an inertial step. Under reasonable parameters, the strong convergence theorem is established. Secondly, we propose a self-adaptive split proximal algorithm with inertial acceleration. We prove that our algorithm converges strongly under suitable conditions. Notably, both inertial algorithms are extended to multi-step inertial version to accelerate the convergence of the algorithms. Finally, numerical results illustrate the performances of our algorithms. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1017-1398 1572-9265 |
| DOI: | 10.1007/s11075-024-01788-x |