Wigner function for Klein-Gordon oscillator in commutative and noncommutative spaces

. As a quasi-probability distribution function in phase-space and a special representation of the density matrix, the Wigner function is of great significance in physics. In this work, the Wigner function for the Klein-Gordon oscillator is studied in commutative and noncommutative spaces. We first s...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:European physical journal plus Ročník 131; číslo 6; s. 212
Hlavní autoři: Hassanabadi, S., Ghominejad, M.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2016
Springer Nature B.V
Témata:
ISSN:2190-5444, 2190-5444
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:. As a quasi-probability distribution function in phase-space and a special representation of the density matrix, the Wigner function is of great significance in physics. In this work, the Wigner function for the Klein-Gordon oscillator is studied in commutative and noncommutative spaces. We first study the Wigner function for Klein-Gordon oscillator in commutative space then, by using a generalized Bopp's shift method, we obtain the corresponding Wigner function in noncommutative space. The additional terms in Wigner function on a NC space is related to the noncommutativity of space.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2190-5444
2190-5444
DOI:10.1140/epjp/i2016-16212-6