Wigner function for Klein-Gordon oscillator in commutative and noncommutative spaces
. As a quasi-probability distribution function in phase-space and a special representation of the density matrix, the Wigner function is of great significance in physics. In this work, the Wigner function for the Klein-Gordon oscillator is studied in commutative and noncommutative spaces. We first s...
Uloženo v:
| Vydáno v: | European physical journal plus Ročník 131; číslo 6; s. 212 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.06.2016
Springer Nature B.V |
| Témata: | |
| ISSN: | 2190-5444, 2190-5444 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | .
As a quasi-probability distribution function in phase-space and a special representation of the density matrix, the Wigner function is of great significance in physics. In this work, the Wigner function for the Klein-Gordon oscillator is studied in commutative and noncommutative spaces. We first study the Wigner function for Klein-Gordon oscillator in commutative space then, by using a generalized Bopp's shift method, we obtain the corresponding Wigner function in noncommutative space. The additional terms in Wigner function on a NC space is related to the noncommutativity of space. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2190-5444 2190-5444 |
| DOI: | 10.1140/epjp/i2016-16212-6 |