CVAE‐SFA: A practical dual‐channel and multi‐index comprehensive operating performance assessment method for dynamic nonstationary industrial processes

The process operating performance assessment (POPA) of process industry plays a key role in the safe, stable, and efficient operation of production process. However, the actual industrial production process often exhibits nonstationary characteristics, leading to frequent anomalies that complicate P...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Canadian journal of chemical engineering Ročník 104; číslo 1; s. 240 - 261
Hlavní autori: Zhang, Zhipeng, Wei, Libin, Hao, Xiaochen, Huang, Gaolu, Hu, Jiahao, Lu, Tianqiang
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Hoboken, USA John Wiley & Sons, Inc 15.07.2025
Predmet:
ISSN:0008-4034, 1939-019X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The process operating performance assessment (POPA) of process industry plays a key role in the safe, stable, and efficient operation of production process. However, the actual industrial production process often exhibits nonstationary characteristics, leading to frequent anomalies that complicate POPA. Traditional POPA methods are mostly based on limited stable working conditions and single control limits, so it is difficult to fully evaluate the anomaly degree and lack comprehensive assessment indexes. To address these issues, this paper proposes a CVAE‐SFA dual‐channel multi‐index comprehensive POPA method for nonstationary conditions. It introduces four control limits of ‘optimal, good, general, and poor’ based on the optimal reconstruction error from a conditional variational autoencoder (CVAE) and kernel density estimation (KDE). This creates a CVAE optimal grade classification channel for simultaneous qualitative and quantitative evaluations of current operating conditions. Additionally, to monitor dynamic characteristics under nonstationary conditions, a slow feature analysis (SFA) S2 statistic anomaly monitoring channel is established. By identifying slow‐changing essential features within the system, dynamic anomaly monitoring is achieved. Finally, a comprehensive scoring index (CSI) integrates dual‐channel monitoring results to evaluate quality, yield, energy consumption, and stability. The effectiveness of this method is validated through experiments in the cement clinker production process (CCPP).
AbstractList The process operating performance assessment (POPA) of process industry plays a key role in the safe, stable, and efficient operation of production process. However, the actual industrial production process often exhibits nonstationary characteristics, leading to frequent anomalies that complicate POPA. Traditional POPA methods are mostly based on limited stable working conditions and single control limits, so it is difficult to fully evaluate the anomaly degree and lack comprehensive assessment indexes. To address these issues, this paper proposes a CVAE‐SFA dual‐channel multi‐index comprehensive POPA method for nonstationary conditions. It introduces four control limits of ‘optimal, good, general, and poor’ based on the optimal reconstruction error from a conditional variational autoencoder (CVAE) and kernel density estimation (KDE). This creates a CVAE optimal grade classification channel for simultaneous qualitative and quantitative evaluations of current operating conditions. Additionally, to monitor dynamic characteristics under nonstationary conditions, a slow feature analysis (SFA) S2 statistic anomaly monitoring channel is established. By identifying slow‐changing essential features within the system, dynamic anomaly monitoring is achieved. Finally, a comprehensive scoring index (CSI) integrates dual‐channel monitoring results to evaluate quality, yield, energy consumption, and stability. The effectiveness of this method is validated through experiments in the cement clinker production process (CCPP).
The process operating performance assessment (POPA) of process industry plays a key role in the safe, stable, and efficient operation of production process. However, the actual industrial production process often exhibits nonstationary characteristics, leading to frequent anomalies that complicate POPA. Traditional POPA methods are mostly based on limited stable working conditions and single control limits, so it is difficult to fully evaluate the anomaly degree and lack comprehensive assessment indexes. To address these issues, this paper proposes a CVAE‐SFA dual‐channel multi‐index comprehensive POPA method for nonstationary conditions. It introduces four control limits of ‘optimal, good, general, and poor’ based on the optimal reconstruction error from a conditional variational autoencoder (CVAE) and kernel density estimation (KDE). This creates a CVAE optimal grade classification channel for simultaneous qualitative and quantitative evaluations of current operating conditions. Additionally, to monitor dynamic characteristics under nonstationary conditions, a slow feature analysis (SFA) statistic anomaly monitoring channel is established. By identifying slow‐changing essential features within the system, dynamic anomaly monitoring is achieved. Finally, a comprehensive scoring index (CSI) integrates dual‐channel monitoring results to evaluate quality, yield, energy consumption, and stability. The effectiveness of this method is validated through experiments in the cement clinker production process (CCPP).
Author Hu, Jiahao
Hao, Xiaochen
Huang, Gaolu
Zhang, Zhipeng
Wei, Libin
Lu, Tianqiang
Author_xml – sequence: 1
  givenname: Zhipeng
  surname: Zhang
  fullname: Zhang, Zhipeng
  organization: Yanshan University
– sequence: 2
  givenname: Libin
  surname: Wei
  fullname: Wei, Libin
  organization: Yanshan University
– sequence: 3
  givenname: Xiaochen
  orcidid: 0000-0001-6948-0995
  surname: Hao
  fullname: Hao, Xiaochen
  email: haoxiaochen@ysu.edu.cn
  organization: Yanshan University
– sequence: 4
  givenname: Gaolu
  surname: Huang
  fullname: Huang, Gaolu
  organization: Yanshan University
– sequence: 5
  givenname: Jiahao
  surname: Hu
  fullname: Hu, Jiahao
  organization: Yanshan University
– sequence: 6
  givenname: Tianqiang
  surname: Lu
  fullname: Lu, Tianqiang
  organization: Yanshan University
BookMark eNp9UEtOwzAQtVCRaAsbTuA1UortBCVmF0UtH1ViwUfsIn_G1FXiRHYKdMcRuACX4yS4lDWr-b33ZuZN0Mh1DhA6pWRGCWHnaq1glsesOEBjylOeEMqfR2hMCCmSjKTZEZqEsI4lIxkdo6_qqZx_f3zeL8pLXOLeCzVYJRqsN6KJfbUSzkGDhdO43TSDjT3rNLxj1bW9hxW4YF8Bdz14MVj3gmNiOt8KpwCLECCEFtyAWxhWncZxhPXWidYqHG8PQyR1TvgtjqqbMHgbd_e-U7CjHqNDI5oAJ39xih4X84fqOlneXd1U5TJRLI9_0TSVxpiCm5TmBRjNsqKAQgOjjGU8l1KanCugWnPJ0oxmxoCUF7nkuaFEpVN0ttdVvgvBg6l7b9t4VU1JvTO23hlb_xobwXQPfrMNbP9B1tVtNd9zfgBzboUQ
Cites_doi 10.1016/j.jprocont.2021.07.007
10.1016/j.jprocont.2022.01.001
10.1021/acs.iecr.8b05005
10.1016/j.eswa.2022.117919
10.1016/j.jprocont.2019.04.001
10.1016/j.eswa.2019.113105
10.1016/j.psep.2024.04.124
10.1109/TII.2023.3242816
10.1016/j.ins.2023.118988
10.1109/TCYB.2021.3071665
10.1371/journal.pone.0157567
10.1021/ie801870g
10.1016/j.compchemeng.2020.107156
10.1002/aic.14888
10.1016/j.conengprac.2019.104187
10.1016/j.isatra.2021.01.002
10.1126/science.1205438
10.1109/JSEN.2022.3221282
10.1016/j.jprocont.2024.103209
10.1016/j.cherd.2015.03.008
10.1021/ie9019648
10.1002/cjce.24193
10.1109/TII.2023.3342411
10.1016/j.isatra.2021.10.024
10.1109/TASE.2022.3230687
10.1109/TII.2019.2934757
10.1214/aoms/1177728190
10.1016/j.jprocont.2023.103058
10.1002/cjce.23159
10.1162/089976602317318938
10.1109/TASE.2012.2187892
10.1214/aoms/1177704472
10.3390/pr10020335
10.1109/TCYB.2021.3140065
10.1016/j.compind.2024.104131
10.1016/j.conengprac.2020.104698
10.1016/j.asoc.2022.109889
10.1016/j.jprocont.2022.06.011
10.1016/j.jprocont.2015.12.004
ContentType Journal Article
Copyright 2025 Canadian Society for Chemical Engineering.
Copyright_xml – notice: 2025 Canadian Society for Chemical Engineering.
DBID AAYXX
CITATION
DOI 10.1002/cjce.70028
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1939-019X
EndPage 261
ExternalDocumentID 10_1002_cjce_70028
CJCE70028
Genre researchArticle
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 62073281
– fundername: Hebei Provincial Natural Science Foundation
  funderid: F2022203088; F2023203029
GroupedDBID -~X
.3N
.DC
.GA
.Y3
05W
0R~
123
1L6
1OB
1OC
29B
31~
33P
3SF
3WU
4.4
50Y
50Z
52M
52O
52T
52U
52W
6J9
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8WZ
930
A03
A6W
AAESR
AAEVG
AAHQN
AAIKC
AAMMB
AAMNL
AAMNW
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABEFU
ABJIA
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AI.
AIAGR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BLYAC
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
CS3
D-E
D-F
DCZOG
DPXWK
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F21
FEDTE
G-S
G.N
GODZA
H.T
H.X
HBH
HF~
HGLYW
HVGLF
HZ~
H~9
IAO
ICQ
ISN
ITC
JPC
LATKE
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NDZJH
NF~
NNB
O66
O8X
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TAE
TN5
TUS
UB1
V2E
VH1
W8V
W99
WBFHL
WBKPD
WIH
WIK
WOHZO
WXSBR
WYISQ
XV2
ZY4
ZZTAW
~02
~IA
~WT
AAYXX
CITATION
ID FETCH-LOGICAL-c2708-133bfff89f3178efd2488e8de2122497bbbf79ce1dd9b23414ffebb57b97f10c3
IEDL.DBID DRFUL
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001528924600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0008-4034
IngestDate Sat Nov 29 07:41:53 EST 2025
Wed Dec 10 07:48:42 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2708-133bfff89f3178efd2488e8de2122497bbbf79ce1dd9b23414ffebb57b97f10c3
ORCID 0000-0001-6948-0995
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cjce.70028
PageCount 22
ParticipantIDs crossref_primary_10_1002_cjce_70028
wiley_primary_10_1002_cjce_70028_CJCE70028
PublicationCentury 2000
PublicationDate 2025-07-15
PublicationDateYYYYMMDD 2025-07-15
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-15
  day: 15
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
PublicationTitle Canadian journal of chemical engineering
PublicationYear 2025
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2022; 111
2023; 53
2002; 14
2011; 334
2019; 93
2019; 77
2015; 97
2021; 105
2023; 19
2021; 107
2024; 162
2020; 16
2024; 187
2020; 145
2021; 144
2023; 129
2022; 22
1962; 33
2016; 39
2022; 116
2009; 48
202; 100
2016; 11
1985; 39
2010; 49
2024; 138
2015; 61
2021; 114
2023; 132
2013; 255
1956; 27
2024; 20
2022; 52
2018; 96
2024; 21
2022; 10
2022; 33
2022; 207
2022; 128
2023; 639
2018; 58
2012; 9
Ji C. (e_1_2_10_3_1) 2022; 10
Zhao C. (e_1_2_10_2_1) 2022; 116
Parzen E. (e_1_2_10_39_1) 1962; 33
Tornqvist L. (e_1_2_10_45_1) 1985; 39
CanoIzquierdo J. M. (e_1_2_10_6_1) 2012; 9
Shang C. (e_1_2_10_26_1) 2015; 61
Zhang J. (e_1_2_10_40_1) 2023; 53
Ji H. (e_1_2_10_29_1) 2022; 22
Bu K. (e_1_2_10_20_1) 2024; 20
Rosenblatt M. (e_1_2_10_44_1) 1956; 27
Qin Y. (e_1_2_10_27_1) 2019; 77
Du S. (e_1_2_10_13_1) 2022; 52
Wang Y. (e_1_2_10_17_1) 2021; 144
Gao X. (e_1_2_10_28_1) 2021; 105
Reshef D. N. (e_1_2_10_41_1) 2011; 334
Bu K. (e_1_2_10_19_1) 2022; 128
Niu D. (e_1_2_10_12_1); 100
Tang P. (e_1_2_10_36_1) 2023; 19
Zhang C. (e_1_2_10_22_1) 2024; 187
e_1_2_10_35_1
Wang K. (e_1_2_10_8_1) 2023; 129
e_1_2_10_34_1
Wang H. (e_1_2_10_30_1) 2022; 111
Zhang Z. (e_1_2_10_31_1) 2024; 138
Tang P. (e_1_2_10_32_1) 2021; 114
Peng C. (e_1_2_10_33_1) 2022; 207
Shang C. (e_1_2_10_38_1) 2016; 39
Zou X. (e_1_2_10_23_1) 2018; 58
Zou X. (e_1_2_10_24_1) 2020; 16
Chen Y. (e_1_2_10_42_1) 2016; 11
Zhang C. (e_1_2_10_14_1) 2023; 132
Song P. (e_1_2_10_25_1) 2022; 33
Liu Y. (e_1_2_10_10_1) 2015; 97
Wiskott L. (e_1_2_10_37_1) 2002; 14
Ahsan M. (e_1_2_10_43_1) 2020; 145
Zou X. (e_1_2_10_16_1) 2018; 96
Zhang C. (e_1_2_10_4_1) 2024; 162
Ye L. (e_1_2_10_15_1) 2009; 48
Zhang C. (e_1_2_10_18_1) 2021; 107
Zou X. (e_1_2_10_9_1) 2023; 639
Li L. (e_1_2_10_11_1) 2019; 93
Palma L. B. (e_1_2_10_7_1) 2013
Chu F. (e_1_2_10_21_1) 2024; 21
Pariyani A. (e_1_2_10_5_1) 2010; 49
References_xml – volume: 21
  start-page: 593
  year: 2024
  publication-title: IEEE Trans. Autom. Sci. Eng.
– volume: 114
  start-page: 444
  year: 2021
  publication-title: ISA Trans.
– volume: 33
  start-page: 3416
  year: 2022
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 128
  start-page: 357
  year: 2022
  publication-title: ISA Trans.
– volume: 16
  start-page: 2776
  year: 2020
  publication-title: IEEE Trans. Ind. Inform.
– volume: 144
  year: 2021
  publication-title: Comput. Chem. Eng.
– volume: 187
  start-page: 195
  year: 2024
  publication-title: Process Saf. Environ. Prot.
– volume: 162
  year: 2024
  publication-title: Comput. Ind.
– volume: 255
  year: 2013
– volume: 52
  start-page: 10529
  year: 2022
  publication-title: IEEE Trans. Cybern.
– volume: 39
  start-page: 21
  year: 2016
  publication-title: J. Process Control
– volume: 138
  year: 2024
  publication-title: J. Process Control
– volume: 33
  start-page: 1065
  year: 1962
  publication-title: Ann. Math. Stat.
– volume: 53
  start-page: 4841
  year: 2023
  publication-title: IEEE Trans. Cybern.
– volume: 97
  start-page: 77
  year: 2015
  publication-title: Chem. Eng. Res. Des.
– volume: 100
  start-page: 811
  year: 202
  publication-title: Can. J. Chem. Eng.
– volume: 11
  year: 2016
  publication-title: PLoS One
– volume: 61
  start-page: 3666
  year: 2015
  publication-title: AIChE J.
– volume: 20
  start-page: 6336
  year: 2024
  publication-title: IEEE Trans. Ind. Inform.
– volume: 207
  year: 2022
  publication-title: Expert Syst. Appl.
– volume: 93
  year: 2019
  publication-title: Control Eng. Pract.
– volume: 111
  start-page: 27
  year: 2022
  publication-title: J. Process Control
– volume: 19
  start-page: 10987
  year: 2023
  publication-title: IEEE Trans. Ind. Inform.
– volume: 96
  start-page: 2395
  year: 2018
  publication-title: Can. J. Chem. Eng.
– volume: 334
  start-page: 1518
  year: 2011
  publication-title: Science
– volume: 9
  start-page: 377
  year: 2012
  publication-title: IEEE Trans. Autom. Sci. Eng.
– volume: 48
  start-page: 10912
  year: 2009
  publication-title: Ind. Eng. Chem. Res.
– volume: 22
  start-page: 24299
  year: 2022
  publication-title: IEEE Sens. J.
– volume: 105
  start-page: 27
  year: 2021
  publication-title: J. Process Control
– volume: 49
  start-page: 8062
  year: 2010
  publication-title: Ind. Eng. Chem. Res.
– volume: 639
  year: 2023
  publication-title: Inf. Sci.
– volume: 77
  start-page: 141
  year: 2019
  publication-title: J. Process Control
– volume: 129
  year: 2023
  publication-title: J. Process Control
– volume: 39
  start-page: 43
  year: 1985
  publication-title: Am. Stat.
– volume: 107
  year: 2021
  publication-title: Control Eng. Pract.
– volume: 27
  start-page: 832
  year: 1956
  publication-title: Ann. Math. Stat.
– volume: 116
  start-page: 255
  year: 2022
  publication-title: J. Process Control
– volume: 58
  start-page: 1341
  year: 2018
  publication-title: Ind. Eng. Chem. Res.
– volume: 10
  year: 2022
  publication-title: Processes
– volume: 14
  start-page: 715
  year: 2002
  publication-title: Neural Comput.
– volume: 132
  year: 2023
  publication-title: Appl. Soft Comput.
– volume: 145
  year: 2020
  publication-title: Expert Syst. Appl.
– volume: 105
  start-page: 27
  year: 2021
  ident: e_1_2_10_28_1
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2021.07.007
– volume: 111
  start-page: 27
  year: 2022
  ident: e_1_2_10_30_1
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2022.01.001
– volume: 58
  start-page: 1341
  year: 2018
  ident: e_1_2_10_23_1
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.8b05005
– volume: 207
  year: 2022
  ident: e_1_2_10_33_1
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.117919
– volume: 77
  start-page: 141
  year: 2019
  ident: e_1_2_10_27_1
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2019.04.001
– volume: 145
  year: 2020
  ident: e_1_2_10_43_1
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.113105
– volume: 187
  start-page: 195
  year: 2024
  ident: e_1_2_10_22_1
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2024.04.124
– volume: 19
  start-page: 10987
  year: 2023
  ident: e_1_2_10_36_1
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2023.3242816
– ident: e_1_2_10_35_1
– volume: 639
  year: 2023
  ident: e_1_2_10_9_1
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2023.118988
– volume: 52
  start-page: 10529
  year: 2022
  ident: e_1_2_10_13_1
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2021.3071665
– volume: 11
  year: 2016
  ident: e_1_2_10_42_1
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0157567
– volume: 48
  start-page: 10912
  year: 2009
  ident: e_1_2_10_15_1
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie801870g
– volume: 144
  year: 2021
  ident: e_1_2_10_17_1
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2020.107156
– start-page: 235
  volume-title: Hybrid Approach for Control Loop Performance Assessment
  year: 2013
  ident: e_1_2_10_7_1
– volume: 61
  start-page: 3666
  year: 2015
  ident: e_1_2_10_26_1
  publication-title: AIChE J.
  doi: 10.1002/aic.14888
– volume: 93
  year: 2019
  ident: e_1_2_10_11_1
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2019.104187
– volume: 33
  start-page: 3416
  year: 2022
  ident: e_1_2_10_25_1
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 114
  start-page: 444
  year: 2021
  ident: e_1_2_10_32_1
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2021.01.002
– volume: 334
  start-page: 1518
  year: 2011
  ident: e_1_2_10_41_1
  publication-title: Science
  doi: 10.1126/science.1205438
– volume: 22
  start-page: 24299
  year: 2022
  ident: e_1_2_10_29_1
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2022.3221282
– volume: 138
  year: 2024
  ident: e_1_2_10_31_1
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2024.103209
– volume: 97
  start-page: 77
  year: 2015
  ident: e_1_2_10_10_1
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2015.03.008
– volume: 49
  start-page: 8062
  year: 2010
  ident: e_1_2_10_5_1
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie9019648
– volume: 100
  start-page: 811
  ident: e_1_2_10_12_1
  publication-title: Can. J. Chem. Eng.
  doi: 10.1002/cjce.24193
– ident: e_1_2_10_34_1
– volume: 20
  start-page: 6336
  year: 2024
  ident: e_1_2_10_20_1
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2023.3342411
– volume: 128
  start-page: 357
  year: 2022
  ident: e_1_2_10_19_1
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2021.10.024
– volume: 39
  start-page: 43
  year: 1985
  ident: e_1_2_10_45_1
  publication-title: Am. Stat.
– volume: 21
  start-page: 593
  year: 2024
  ident: e_1_2_10_21_1
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2022.3230687
– volume: 16
  start-page: 2776
  year: 2020
  ident: e_1_2_10_24_1
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2019.2934757
– volume: 27
  start-page: 832
  year: 1956
  ident: e_1_2_10_44_1
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177728190
– volume: 129
  year: 2023
  ident: e_1_2_10_8_1
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2023.103058
– volume: 96
  start-page: 2395
  year: 2018
  ident: e_1_2_10_16_1
  publication-title: Can. J. Chem. Eng.
  doi: 10.1002/cjce.23159
– volume: 14
  start-page: 715
  year: 2002
  ident: e_1_2_10_37_1
  publication-title: Neural Comput.
  doi: 10.1162/089976602317318938
– volume: 9
  start-page: 377
  year: 2012
  ident: e_1_2_10_6_1
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2012.2187892
– volume: 33
  start-page: 1065
  year: 1962
  ident: e_1_2_10_39_1
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177704472
– volume: 10
  year: 2022
  ident: e_1_2_10_3_1
  publication-title: Processes
  doi: 10.3390/pr10020335
– volume: 53
  start-page: 4841
  year: 2023
  ident: e_1_2_10_40_1
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2021.3140065
– volume: 162
  year: 2024
  ident: e_1_2_10_4_1
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2024.104131
– volume: 107
  year: 2021
  ident: e_1_2_10_18_1
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2020.104698
– volume: 132
  year: 2023
  ident: e_1_2_10_14_1
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2022.109889
– volume: 116
  start-page: 255
  year: 2022
  ident: e_1_2_10_2_1
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2022.06.011
– volume: 39
  start-page: 21
  year: 2016
  ident: e_1_2_10_38_1
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2015.12.004
SSID ssj0002041
Score 2.4019775
Snippet The process operating performance assessment (POPA) of process industry plays a key role in the safe, stable, and efficient operation of production process....
SourceID crossref
wiley
SourceType Index Database
Publisher
StartPage 240
SubjectTerms cement clinker production process (CCPP)
conditional variational autoencoder (CVAE)
nonstationary characteristic
process operating performance assessment (POPA)
slow feature analysis (SFA)
Title CVAE‐SFA: A practical dual‐channel and multi‐index comprehensive operating performance assessment method for dynamic nonstationary industrial processes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcjce.70028
Volume 104
WOSCitedRecordID wos001528924600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library
  customDbUrl:
  eissn: 1939-019X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002041
  issn: 0008-4034
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1PS8MwFH_MzYMe_C_OfwT0JNR1abq24qXUDREZok52K02T4DzM0U3Bmx_BL-CX85P4knbdvAjiraRJE5KXl_fS934_gGMvlU2UW2Fx1xUW2rfK8pkQVuB6ykkok05qG7IJr9v1-_3gpgLn01yYHB-ivHDTO8Poa73BEz5uzEBD06dUnnraZ1iAGkXBZVWoXdx2etelJqY2KxjzfPSTHFbCk9LGrPWPA2neQDUnTGf1f2Nbg5XCsiRhLgrrUJHDDViewxvchM_oIWx_vX_cdcIzEpIiQwob6YQsLNdZwNg1SYaCmEhDLDNwikRHnmfyMY92J88jDcWMnySjWd4BSUqQT5LzUhN8RUROeU-GxhA1N4_ZGxmUjCFklKcqyPEW9Drt--jSKvgZrBTnG51Px-FKKT9QaIT4UgmK2kD6QlL9uy7wOOfKC1AYhAg4xeOSKSU5dz0eeKppp842VLFzuQOEO02sw5mTCpsl6LMyNwla1JaqJaV0aR2OposUj3IYjjgHXKaxnuzYTHYdTsyq_FIljq6itnna_UvlPViimvhXI2q6-1CdZC_yABbT18lgnB0WcvcNrkjjaQ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BQQIO7IiyWoITUmjqOHXCLQqtWEqF2MQtimNbwKFULSBx4xP4AX6OL2HshLRckBC3yBnHlj0ej52Z9wB2eabqqLfSEb4vHfRvtRMwKZ3Q59pLKVNe5lqyCd7pBLe34XkRm2NyYXJ8iPLCzawMa6_NAjcX0rUhamj2kKl9bg4N4zDBUI_8CkwcXrSu26Uppi4rKPMCPCh5rMQnpbVh7R870qiHareY1tw_OzcPs4VvSaJcGRZgTHUXYWYEcXAJPuKbqPn59n7Zig5IRIocKaxkUrKw3OQBY9sk7UpiYw2xzAIqEhN73ld3ebw7eewZMGb8JOkNMw9IWsJ8kpyZmuArInPSe9K1rqi9e-y_kvuSM4T08mQFNViG61bzKj5yCoYGJ6Pc4MJ6ntBaB6FGNyRQWlK0ByqQipofdiEXQmgeojpIGQqKGybTWgnhcxFyXXczbwUq2LhaBSK8OsoI5mXSZSmeWpmfhg3qKt1QSvm0Cjvfs5T0ciCOJIdcpokZ7MQOdhX27LT8IpLEJ3HTPq39RXgbpo6uztpJ-7hzug7T1NAAG3xNfwMqT_1ntQmT2cvT_aC_VSjhFzpN51k
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA66iujBt_g2oCehbjdNN423ZXeLLxbxhbfSNBPUw1rWB3jzJ_gH_HP-Eidp7epFEG8lTZqQzEwm6cz3EbIjMmig3GpPhaH20L81XsS19mQoTJAyDkHmO7IJ0etF19fytIzNsbkwBT5EdeFmNcPZa6vgkGtTH6KGZncZ7Al7aBglYzyUTdTLsc5ZfHlSmWLm85IyL8KDUsArfFJWH7b-sSN991DdFhPP_HNws2S69C1pqxCGOTIC_Xky9Q1xcIG8t69a3Y_Xt_O4tU9btMyRwkY2JQvLbR4w9k3TvqYu1hDLHKAitbHnA7gp4t3pfW7BmPGTNB9mHtC0gvmkBTM1xVdUF6T3tO9cUXf3OHihtxVnCM2LZAV4WCSXcfeifeCVDA1exoTFhQ0CZYyJpEE3JAKjGdoDiDQw-8NOCqWUERLFQWupGG6Y3BhQKhRKCtPws2CJ1LBzWCZUBQ2so3iQaZ-neGrlYSqbzAfTBICQrZDtr1VK8gKIIykgl1liJztxk71Cdt2y_FIlaR-1u-5p9S-Vt8jEaSdOTg57x2tkklkWYAuvGa6T2uPgCTbIePb8ePsw2Cxl8BPsj-bU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CVAE%E2%80%90SFA%3A+A+practical+dual%E2%80%90channel+and+multi%E2%80%90index+comprehensive+operating+performance+assessment+method+for+dynamic+nonstationary+industrial+processes&rft.jtitle=Canadian+journal+of+chemical+engineering&rft.au=Zhang%2C+Zhipeng&rft.au=Wei%2C+Libin&rft.au=Hao%2C+Xiaochen&rft.au=Huang%2C+Gaolu&rft.date=2025-07-15&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0008-4034&rft.eissn=1939-019X&rft.volume=104&rft.issue=1&rft.spage=240&rft.epage=261&rft_id=info:doi/10.1002%2Fcjce.70028&rft.externalDBID=10.1002%252Fcjce.70028&rft.externalDocID=CJCE70028
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-4034&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-4034&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-4034&client=summon