CVAE‐SFA: A practical dual‐channel and multi‐index comprehensive operating performance assessment method for dynamic nonstationary industrial processes
The process operating performance assessment (POPA) of process industry plays a key role in the safe, stable, and efficient operation of production process. However, the actual industrial production process often exhibits nonstationary characteristics, leading to frequent anomalies that complicate P...
Saved in:
| Published in: | Canadian journal of chemical engineering Vol. 104; no. 1; pp. 240 - 261 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Hoboken, USA
John Wiley & Sons, Inc
15.07.2025
|
| Subjects: | |
| ISSN: | 0008-4034, 1939-019X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The process operating performance assessment (POPA) of process industry plays a key role in the safe, stable, and efficient operation of production process. However, the actual industrial production process often exhibits nonstationary characteristics, leading to frequent anomalies that complicate POPA. Traditional POPA methods are mostly based on limited stable working conditions and single control limits, so it is difficult to fully evaluate the anomaly degree and lack comprehensive assessment indexes. To address these issues, this paper proposes a CVAE‐SFA dual‐channel multi‐index comprehensive POPA method for nonstationary conditions. It introduces four control limits of ‘optimal, good, general, and poor’ based on the optimal reconstruction error from a conditional variational autoencoder (CVAE) and kernel density estimation (KDE). This creates a CVAE optimal grade classification channel for simultaneous qualitative and quantitative evaluations of current operating conditions. Additionally, to monitor dynamic characteristics under nonstationary conditions, a slow feature analysis (SFA) S2 statistic anomaly monitoring channel is established. By identifying slow‐changing essential features within the system, dynamic anomaly monitoring is achieved. Finally, a comprehensive scoring index (CSI) integrates dual‐channel monitoring results to evaluate quality, yield, energy consumption, and stability. The effectiveness of this method is validated through experiments in the cement clinker production process (CCPP). |
|---|---|
| AbstractList | The process operating performance assessment (POPA) of process industry plays a key role in the safe, stable, and efficient operation of production process. However, the actual industrial production process often exhibits nonstationary characteristics, leading to frequent anomalies that complicate POPA. Traditional POPA methods are mostly based on limited stable working conditions and single control limits, so it is difficult to fully evaluate the anomaly degree and lack comprehensive assessment indexes. To address these issues, this paper proposes a CVAE‐SFA dual‐channel multi‐index comprehensive POPA method for nonstationary conditions. It introduces four control limits of ‘optimal, good, general, and poor’ based on the optimal reconstruction error from a conditional variational autoencoder (CVAE) and kernel density estimation (KDE). This creates a CVAE optimal grade classification channel for simultaneous qualitative and quantitative evaluations of current operating conditions. Additionally, to monitor dynamic characteristics under nonstationary conditions, a slow feature analysis (SFA) S2 statistic anomaly monitoring channel is established. By identifying slow‐changing essential features within the system, dynamic anomaly monitoring is achieved. Finally, a comprehensive scoring index (CSI) integrates dual‐channel monitoring results to evaluate quality, yield, energy consumption, and stability. The effectiveness of this method is validated through experiments in the cement clinker production process (CCPP). The process operating performance assessment (POPA) of process industry plays a key role in the safe, stable, and efficient operation of production process. However, the actual industrial production process often exhibits nonstationary characteristics, leading to frequent anomalies that complicate POPA. Traditional POPA methods are mostly based on limited stable working conditions and single control limits, so it is difficult to fully evaluate the anomaly degree and lack comprehensive assessment indexes. To address these issues, this paper proposes a CVAE‐SFA dual‐channel multi‐index comprehensive POPA method for nonstationary conditions. It introduces four control limits of ‘optimal, good, general, and poor’ based on the optimal reconstruction error from a conditional variational autoencoder (CVAE) and kernel density estimation (KDE). This creates a CVAE optimal grade classification channel for simultaneous qualitative and quantitative evaluations of current operating conditions. Additionally, to monitor dynamic characteristics under nonstationary conditions, a slow feature analysis (SFA) statistic anomaly monitoring channel is established. By identifying slow‐changing essential features within the system, dynamic anomaly monitoring is achieved. Finally, a comprehensive scoring index (CSI) integrates dual‐channel monitoring results to evaluate quality, yield, energy consumption, and stability. The effectiveness of this method is validated through experiments in the cement clinker production process (CCPP). |
| Author | Hu, Jiahao Hao, Xiaochen Huang, Gaolu Zhang, Zhipeng Wei, Libin Lu, Tianqiang |
| Author_xml | – sequence: 1 givenname: Zhipeng surname: Zhang fullname: Zhang, Zhipeng organization: Yanshan University – sequence: 2 givenname: Libin surname: Wei fullname: Wei, Libin organization: Yanshan University – sequence: 3 givenname: Xiaochen orcidid: 0000-0001-6948-0995 surname: Hao fullname: Hao, Xiaochen email: haoxiaochen@ysu.edu.cn organization: Yanshan University – sequence: 4 givenname: Gaolu surname: Huang fullname: Huang, Gaolu organization: Yanshan University – sequence: 5 givenname: Jiahao surname: Hu fullname: Hu, Jiahao organization: Yanshan University – sequence: 6 givenname: Tianqiang surname: Lu fullname: Lu, Tianqiang organization: Yanshan University |
| BookMark | eNp9UEtOwzAQtVCRaAsbTuA1UortBCVmF0UtH1ViwUfsIn_G1FXiRHYKdMcRuACX4yS4lDWr-b33ZuZN0Mh1DhA6pWRGCWHnaq1glsesOEBjylOeEMqfR2hMCCmSjKTZEZqEsI4lIxkdo6_qqZx_f3zeL8pLXOLeCzVYJRqsN6KJfbUSzkGDhdO43TSDjT3rNLxj1bW9hxW4YF8Bdz14MVj3gmNiOt8KpwCLECCEFtyAWxhWncZxhPXWidYqHG8PQyR1TvgtjqqbMHgbd_e-U7CjHqNDI5oAJ39xih4X84fqOlneXd1U5TJRLI9_0TSVxpiCm5TmBRjNsqKAQgOjjGU8l1KanCugWnPJ0oxmxoCUF7nkuaFEpVN0ttdVvgvBg6l7b9t4VU1JvTO23hlb_xobwXQPfrMNbP9B1tVtNd9zfgBzboUQ |
| Cites_doi | 10.1016/j.jprocont.2021.07.007 10.1016/j.jprocont.2022.01.001 10.1021/acs.iecr.8b05005 10.1016/j.eswa.2022.117919 10.1016/j.jprocont.2019.04.001 10.1016/j.eswa.2019.113105 10.1016/j.psep.2024.04.124 10.1109/TII.2023.3242816 10.1016/j.ins.2023.118988 10.1109/TCYB.2021.3071665 10.1371/journal.pone.0157567 10.1021/ie801870g 10.1016/j.compchemeng.2020.107156 10.1002/aic.14888 10.1016/j.conengprac.2019.104187 10.1016/j.isatra.2021.01.002 10.1126/science.1205438 10.1109/JSEN.2022.3221282 10.1016/j.jprocont.2024.103209 10.1016/j.cherd.2015.03.008 10.1021/ie9019648 10.1002/cjce.24193 10.1109/TII.2023.3342411 10.1016/j.isatra.2021.10.024 10.1109/TASE.2022.3230687 10.1109/TII.2019.2934757 10.1214/aoms/1177728190 10.1016/j.jprocont.2023.103058 10.1002/cjce.23159 10.1162/089976602317318938 10.1109/TASE.2012.2187892 10.1214/aoms/1177704472 10.3390/pr10020335 10.1109/TCYB.2021.3140065 10.1016/j.compind.2024.104131 10.1016/j.conengprac.2020.104698 10.1016/j.asoc.2022.109889 10.1016/j.jprocont.2022.06.011 10.1016/j.jprocont.2015.12.004 |
| ContentType | Journal Article |
| Copyright | 2025 Canadian Society for Chemical Engineering. |
| Copyright_xml | – notice: 2025 Canadian Society for Chemical Engineering. |
| DBID | AAYXX CITATION |
| DOI | 10.1002/cjce.70028 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1939-019X |
| EndPage | 261 |
| ExternalDocumentID | 10_1002_cjce_70028 CJCE70028 |
| Genre | researchArticle |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 62073281 – fundername: Hebei Provincial Natural Science Foundation funderid: F2022203088; F2023203029 |
| GroupedDBID | -~X .3N .DC .GA .Y3 05W 0R~ 123 1L6 1OB 1OC 29B 31~ 33P 3SF 3WU 4.4 50Y 50Z 52M 52O 52T 52U 52W 6J9 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8WZ 930 A03 A6W AAESR AAEVG AAHQN AAIKC AAMMB AAMNL AAMNW AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABEFU ABJIA ABJNI ABPVW ACAHQ ACBWZ ACCZN ACGFO ACGFS ACIWK ACNCT ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AI. AIAGR AIDQK AIDYY AIQQE AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BLYAC BMNLL BMXJE BNHUX BROTX BRXPI CS3 D-E D-F DCZOG DPXWK DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F21 FEDTE G-S G.N GODZA H.T H.X HBH HF~ HGLYW HVGLF HZ~ H~9 IAO ICQ ISN ITC JPC LATKE LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NDZJH NF~ NNB O66 O8X O9- OIG P2P P2W P2X P4D PALCI Q.N QB0 QRW R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TAE TN5 TUS UB1 V2E VH1 W8V W99 WBFHL WBKPD WIH WIK WOHZO WXSBR WYISQ XV2 ZY4 ZZTAW ~02 ~IA ~WT AAYXX CITATION |
| ID | FETCH-LOGICAL-c2708-133bfff89f3178efd2488e8de2122497bbbf79ce1dd9b23414ffebb57b97f10c3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001528924600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0008-4034 |
| IngestDate | Sat Nov 29 07:41:53 EST 2025 Wed Dec 10 07:48:42 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2708-133bfff89f3178efd2488e8de2122497bbbf79ce1dd9b23414ffebb57b97f10c3 |
| ORCID | 0000-0001-6948-0995 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cjce.70028 |
| PageCount | 22 |
| ParticipantIDs | crossref_primary_10_1002_cjce_70028 wiley_primary_10_1002_cjce_70028_CJCE70028 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-07-15 |
| PublicationDateYYYYMMDD | 2025-07-15 |
| PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken, USA |
| PublicationPlace_xml | – name: Hoboken, USA |
| PublicationTitle | Canadian journal of chemical engineering |
| PublicationYear | 2025 |
| Publisher | John Wiley & Sons, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc |
| References | 2022; 111 2023; 53 2002; 14 2011; 334 2019; 93 2019; 77 2015; 97 2021; 105 2023; 19 2021; 107 2024; 162 2020; 16 2024; 187 2020; 145 2021; 144 2023; 129 2022; 22 1962; 33 2016; 39 2022; 116 2009; 48 202; 100 2016; 11 1985; 39 2010; 49 2024; 138 2015; 61 2021; 114 2023; 132 2013; 255 1956; 27 2024; 20 2022; 52 2018; 96 2024; 21 2022; 10 2022; 33 2022; 207 2022; 128 2023; 639 2018; 58 2012; 9 Ji C. (e_1_2_10_3_1) 2022; 10 Zhao C. (e_1_2_10_2_1) 2022; 116 Parzen E. (e_1_2_10_39_1) 1962; 33 Tornqvist L. (e_1_2_10_45_1) 1985; 39 CanoIzquierdo J. M. (e_1_2_10_6_1) 2012; 9 Shang C. (e_1_2_10_26_1) 2015; 61 Zhang J. (e_1_2_10_40_1) 2023; 53 Ji H. (e_1_2_10_29_1) 2022; 22 Bu K. (e_1_2_10_20_1) 2024; 20 Rosenblatt M. (e_1_2_10_44_1) 1956; 27 Qin Y. (e_1_2_10_27_1) 2019; 77 Du S. (e_1_2_10_13_1) 2022; 52 Wang Y. (e_1_2_10_17_1) 2021; 144 Gao X. (e_1_2_10_28_1) 2021; 105 Reshef D. N. (e_1_2_10_41_1) 2011; 334 Bu K. (e_1_2_10_19_1) 2022; 128 Niu D. (e_1_2_10_12_1); 100 Tang P. (e_1_2_10_36_1) 2023; 19 Zhang C. (e_1_2_10_22_1) 2024; 187 e_1_2_10_35_1 Wang K. (e_1_2_10_8_1) 2023; 129 e_1_2_10_34_1 Wang H. (e_1_2_10_30_1) 2022; 111 Zhang Z. (e_1_2_10_31_1) 2024; 138 Tang P. (e_1_2_10_32_1) 2021; 114 Peng C. (e_1_2_10_33_1) 2022; 207 Shang C. (e_1_2_10_38_1) 2016; 39 Zou X. (e_1_2_10_23_1) 2018; 58 Zou X. (e_1_2_10_24_1) 2020; 16 Chen Y. (e_1_2_10_42_1) 2016; 11 Zhang C. (e_1_2_10_14_1) 2023; 132 Song P. (e_1_2_10_25_1) 2022; 33 Liu Y. (e_1_2_10_10_1) 2015; 97 Wiskott L. (e_1_2_10_37_1) 2002; 14 Ahsan M. (e_1_2_10_43_1) 2020; 145 Zou X. (e_1_2_10_16_1) 2018; 96 Zhang C. (e_1_2_10_4_1) 2024; 162 Ye L. (e_1_2_10_15_1) 2009; 48 Zhang C. (e_1_2_10_18_1) 2021; 107 Zou X. (e_1_2_10_9_1) 2023; 639 Li L. (e_1_2_10_11_1) 2019; 93 Palma L. B. (e_1_2_10_7_1) 2013 Chu F. (e_1_2_10_21_1) 2024; 21 Pariyani A. (e_1_2_10_5_1) 2010; 49 |
| References_xml | – volume: 21 start-page: 593 year: 2024 publication-title: IEEE Trans. Autom. Sci. Eng. – volume: 114 start-page: 444 year: 2021 publication-title: ISA Trans. – volume: 33 start-page: 3416 year: 2022 publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 128 start-page: 357 year: 2022 publication-title: ISA Trans. – volume: 16 start-page: 2776 year: 2020 publication-title: IEEE Trans. Ind. Inform. – volume: 144 year: 2021 publication-title: Comput. Chem. Eng. – volume: 187 start-page: 195 year: 2024 publication-title: Process Saf. Environ. Prot. – volume: 162 year: 2024 publication-title: Comput. Ind. – volume: 255 year: 2013 – volume: 52 start-page: 10529 year: 2022 publication-title: IEEE Trans. Cybern. – volume: 39 start-page: 21 year: 2016 publication-title: J. Process Control – volume: 138 year: 2024 publication-title: J. Process Control – volume: 33 start-page: 1065 year: 1962 publication-title: Ann. Math. Stat. – volume: 53 start-page: 4841 year: 2023 publication-title: IEEE Trans. Cybern. – volume: 97 start-page: 77 year: 2015 publication-title: Chem. Eng. Res. Des. – volume: 100 start-page: 811 year: 202 publication-title: Can. J. Chem. Eng. – volume: 11 year: 2016 publication-title: PLoS One – volume: 61 start-page: 3666 year: 2015 publication-title: AIChE J. – volume: 20 start-page: 6336 year: 2024 publication-title: IEEE Trans. Ind. Inform. – volume: 207 year: 2022 publication-title: Expert Syst. Appl. – volume: 93 year: 2019 publication-title: Control Eng. Pract. – volume: 111 start-page: 27 year: 2022 publication-title: J. Process Control – volume: 19 start-page: 10987 year: 2023 publication-title: IEEE Trans. Ind. Inform. – volume: 96 start-page: 2395 year: 2018 publication-title: Can. J. Chem. Eng. – volume: 334 start-page: 1518 year: 2011 publication-title: Science – volume: 9 start-page: 377 year: 2012 publication-title: IEEE Trans. Autom. Sci. Eng. – volume: 48 start-page: 10912 year: 2009 publication-title: Ind. Eng. Chem. Res. – volume: 22 start-page: 24299 year: 2022 publication-title: IEEE Sens. J. – volume: 105 start-page: 27 year: 2021 publication-title: J. Process Control – volume: 49 start-page: 8062 year: 2010 publication-title: Ind. Eng. Chem. Res. – volume: 639 year: 2023 publication-title: Inf. Sci. – volume: 77 start-page: 141 year: 2019 publication-title: J. Process Control – volume: 129 year: 2023 publication-title: J. Process Control – volume: 39 start-page: 43 year: 1985 publication-title: Am. Stat. – volume: 107 year: 2021 publication-title: Control Eng. Pract. – volume: 27 start-page: 832 year: 1956 publication-title: Ann. Math. Stat. – volume: 116 start-page: 255 year: 2022 publication-title: J. Process Control – volume: 58 start-page: 1341 year: 2018 publication-title: Ind. Eng. Chem. Res. – volume: 10 year: 2022 publication-title: Processes – volume: 14 start-page: 715 year: 2002 publication-title: Neural Comput. – volume: 132 year: 2023 publication-title: Appl. Soft Comput. – volume: 145 year: 2020 publication-title: Expert Syst. Appl. – volume: 105 start-page: 27 year: 2021 ident: e_1_2_10_28_1 publication-title: J. Process Control doi: 10.1016/j.jprocont.2021.07.007 – volume: 111 start-page: 27 year: 2022 ident: e_1_2_10_30_1 publication-title: J. Process Control doi: 10.1016/j.jprocont.2022.01.001 – volume: 58 start-page: 1341 year: 2018 ident: e_1_2_10_23_1 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.8b05005 – volume: 207 year: 2022 ident: e_1_2_10_33_1 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.117919 – volume: 77 start-page: 141 year: 2019 ident: e_1_2_10_27_1 publication-title: J. Process Control doi: 10.1016/j.jprocont.2019.04.001 – volume: 145 year: 2020 ident: e_1_2_10_43_1 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2019.113105 – volume: 187 start-page: 195 year: 2024 ident: e_1_2_10_22_1 publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2024.04.124 – volume: 19 start-page: 10987 year: 2023 ident: e_1_2_10_36_1 publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2023.3242816 – ident: e_1_2_10_35_1 – volume: 639 year: 2023 ident: e_1_2_10_9_1 publication-title: Inf. Sci. doi: 10.1016/j.ins.2023.118988 – volume: 52 start-page: 10529 year: 2022 ident: e_1_2_10_13_1 publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2021.3071665 – volume: 11 year: 2016 ident: e_1_2_10_42_1 publication-title: PLoS One doi: 10.1371/journal.pone.0157567 – volume: 48 start-page: 10912 year: 2009 ident: e_1_2_10_15_1 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie801870g – volume: 144 year: 2021 ident: e_1_2_10_17_1 publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2020.107156 – start-page: 235 volume-title: Hybrid Approach for Control Loop Performance Assessment year: 2013 ident: e_1_2_10_7_1 – volume: 61 start-page: 3666 year: 2015 ident: e_1_2_10_26_1 publication-title: AIChE J. doi: 10.1002/aic.14888 – volume: 93 year: 2019 ident: e_1_2_10_11_1 publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2019.104187 – volume: 33 start-page: 3416 year: 2022 ident: e_1_2_10_25_1 publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 114 start-page: 444 year: 2021 ident: e_1_2_10_32_1 publication-title: ISA Trans. doi: 10.1016/j.isatra.2021.01.002 – volume: 334 start-page: 1518 year: 2011 ident: e_1_2_10_41_1 publication-title: Science doi: 10.1126/science.1205438 – volume: 22 start-page: 24299 year: 2022 ident: e_1_2_10_29_1 publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2022.3221282 – volume: 138 year: 2024 ident: e_1_2_10_31_1 publication-title: J. Process Control doi: 10.1016/j.jprocont.2024.103209 – volume: 97 start-page: 77 year: 2015 ident: e_1_2_10_10_1 publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2015.03.008 – volume: 49 start-page: 8062 year: 2010 ident: e_1_2_10_5_1 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie9019648 – volume: 100 start-page: 811 ident: e_1_2_10_12_1 publication-title: Can. J. Chem. Eng. doi: 10.1002/cjce.24193 – ident: e_1_2_10_34_1 – volume: 20 start-page: 6336 year: 2024 ident: e_1_2_10_20_1 publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2023.3342411 – volume: 128 start-page: 357 year: 2022 ident: e_1_2_10_19_1 publication-title: ISA Trans. doi: 10.1016/j.isatra.2021.10.024 – volume: 39 start-page: 43 year: 1985 ident: e_1_2_10_45_1 publication-title: Am. Stat. – volume: 21 start-page: 593 year: 2024 ident: e_1_2_10_21_1 publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2022.3230687 – volume: 16 start-page: 2776 year: 2020 ident: e_1_2_10_24_1 publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2019.2934757 – volume: 27 start-page: 832 year: 1956 ident: e_1_2_10_44_1 publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177728190 – volume: 129 year: 2023 ident: e_1_2_10_8_1 publication-title: J. Process Control doi: 10.1016/j.jprocont.2023.103058 – volume: 96 start-page: 2395 year: 2018 ident: e_1_2_10_16_1 publication-title: Can. J. Chem. Eng. doi: 10.1002/cjce.23159 – volume: 14 start-page: 715 year: 2002 ident: e_1_2_10_37_1 publication-title: Neural Comput. doi: 10.1162/089976602317318938 – volume: 9 start-page: 377 year: 2012 ident: e_1_2_10_6_1 publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2012.2187892 – volume: 33 start-page: 1065 year: 1962 ident: e_1_2_10_39_1 publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177704472 – volume: 10 year: 2022 ident: e_1_2_10_3_1 publication-title: Processes doi: 10.3390/pr10020335 – volume: 53 start-page: 4841 year: 2023 ident: e_1_2_10_40_1 publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2021.3140065 – volume: 162 year: 2024 ident: e_1_2_10_4_1 publication-title: Comput. Ind. doi: 10.1016/j.compind.2024.104131 – volume: 107 year: 2021 ident: e_1_2_10_18_1 publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2020.104698 – volume: 132 year: 2023 ident: e_1_2_10_14_1 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2022.109889 – volume: 116 start-page: 255 year: 2022 ident: e_1_2_10_2_1 publication-title: J. Process Control doi: 10.1016/j.jprocont.2022.06.011 – volume: 39 start-page: 21 year: 2016 ident: e_1_2_10_38_1 publication-title: J. Process Control doi: 10.1016/j.jprocont.2015.12.004 |
| SSID | ssj0002041 |
| Score | 2.401892 |
| Snippet | The process operating performance assessment (POPA) of process industry plays a key role in the safe, stable, and efficient operation of production process.... |
| SourceID | crossref wiley |
| SourceType | Index Database Publisher |
| StartPage | 240 |
| SubjectTerms | cement clinker production process (CCPP) conditional variational autoencoder (CVAE) nonstationary characteristic process operating performance assessment (POPA) slow feature analysis (SFA) |
| Title | CVAE‐SFA: A practical dual‐channel and multi‐index comprehensive operating performance assessment method for dynamic nonstationary industrial processes |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcjce.70028 |
| Volume | 104 |
| WOSCitedRecordID | wos001528924600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1939-019X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002041 issn: 0008-4034 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB5q60EPvsX6IqAnYe02mzYb8bLUFhER8YW3ZfNCPdTSquDNn-Af8M_5S5xkt1u9COJtySabMHnMTHa-bwB2UWNFiikZaJ1lAROGBZnRMmiFRkWchVb4kP-bU352Ft_eivMKHI6xMDk_RHnh5naGP6_dBs_kqDEhDVUPyuxz5zNMQY3iwmVVqB1d9K5Py5OYhqzImBejnxSxkp6UNiatfyik7waq1zC9-f-NbQHmCsuSJPlSWISK6S_B7De-wWX46Nwk3c-398teckASUiCksJEDZGG5QwFj1yTra-IjDbHM0ykSF3k-NHd5tDt5HDgqZvwkGUxwByQrST5Jnpea4Cui85T3pO8NUX_zOHwl92XGEDLIoQpmtALXve5V5zgo8jMECuWNzmcUSWttLCwaIbGxmuJpYGJtqPtdJ7iU0nKhTFNrISmqS2atkbLFpeC2GapoFarYuVkD0naQIxYyHgqJarWNRozMuI4Y1bbFTViHnfEkpYOchiPNCZdp6oSdemHXYc_Pyi9V0s5Jp-uf1v9SeQNmqEv86xg1W5tQfRo-my2YVi9P96PhdrHuvgCmFuMv |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BQQIO7IiyWoITUiA4Th1zq0KrAqVCbOotijdRDiVqAYkbn8AP8HN8CbYTUrggIW6RY8eWPfaMJ_PeAOwajRUIIrgnZZp6hCnipUpyL_SVCCjxNXMh_7dt2ulE3S67KGJzLBYm54coHW52Z7jz2m5w65A-GLGGinuh9qm9NIzDBDFyFFZg4viyedMuj2LskyJlXmQuSgEp-Unxwaj1D4303UJ1KqY598_BzcNsYVuiei4MCzCm-osw841xcAne49t64-P17apZP0J1VGCkTCMLyTLlFgds-kZpXyIXa2jKHKEisrHnA3WXx7ujh8ySMZtPomyEPEBpSfOJ8szUyLxCMk96j_rOFHW-x8EL6pU5Q1CWgxXUcBlumo3ruOUVGRo8ganlhQ0CrrWOmDZmSKS0xOY8UJFU2P6wY5RzrikT6lBKxrFRmERrxXlIOaP60BfBClRM52oVUM2CjohPqM-4Uaw1Y8bwlMqAYKlDqvwq7HytUpLlRBxJTrmMEzvZiZvsKuy5ZfmlShKfxg33tPaXytsw1bo-byftk87ZOkxjmwbY8muGG1B5HDypTZgUz4-94WCrEMJPMGvnHw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bSsMwGA66ieiFZ3EeA3ol1HVpujTejW3FwxhD3fCuNCecF7N0U_DOR_AFfDmfxCSt3bwRxLuSJk1I8h-S_t_3A3CiLZbHMWeOEHHsYCqxE0vBHN-V3CPYVdSG_A86pNsN7u9pL4_NMViYjB-iuHAzkmH1tRFwmQhVnbKG8kcuz4g5NMyDMvZpXctluXUT9juFKkYuzlPmBfqg5OGCnxRVp61_WKRZD9WamHD1n4NbAyu5bwkb2WZYB3NytAGWZxgHN8FHc9Bof76934aNc9iAOUZKNzKQLF1ucMC6bxiPBLSxhrrMEipCE3ueyocs3h0-JYaMWX8SJlPkAYwLmk-YZaaG-hUUWdJ7OLKuqL17TF_hsMgZApMMrCDHW6Aftu-aF06eocHhiBheWM9jSqmAKu2GBFIJpPWBDIRE5ocdJYwxRSiXNSEoQ9pgYqUkYz5hlKiay71tUNKdyx0A6wZ0hF1MXMq0Ya1rN4bFRHgYCeUT6VbA8fcqRUlGxBFllMsoMpMd2cmugFO7LL9UiZpXzbZ92v1L5SOw2GuFUeeye70HlpDJAmzoNf19UJqkz_IALPCXyXCcHuZ78Avi5-aa |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CVAE+%E2%80%90+SFA+%3A+A+practical+dual%E2%80%90channel+and+multi%E2%80%90index+comprehensive+operating+performance+assessment+method+for+dynamic+nonstationary+industrial+processes&rft.jtitle=Canadian+journal+of+chemical+engineering&rft.au=Zhang%2C+Zhipeng&rft.au=Wei%2C+Libin&rft.au=Hao%2C+Xiaochen&rft.au=Huang%2C+Gaolu&rft.date=2025-07-15&rft.issn=0008-4034&rft.eissn=1939-019X&rft_id=info:doi/10.1002%2Fcjce.70028&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cjce_70028 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-4034&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-4034&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-4034&client=summon |