Linearizable Eigenvector Nonlinearities

We present a method to linearize, without approximation, a specific class of eigenvalue problems with eigenvector nonlinearities (NEPv), where the nonlinearities are expressed by scalar functions that are defined by a quotient of linear functions of the eigenvector. The exact linearization relies on...

Full description

Saved in:
Bibliographic Details
Published in:SIAM journal on matrix analysis and applications Vol. 43; no. 2; pp. 764 - 786
Main Authors: Claes, Rob, Jarlebring, Elias, Meerbergen, Karl, Upadhyaya, Parikshit
Format: Journal Article
Language:English
Published: 01.01.2022
Subjects:
ISSN:0895-4798, 1095-7162, 1095-7162
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We present a method to linearize, without approximation, a specific class of eigenvalue problems with eigenvector nonlinearities (NEPv), where the nonlinearities are expressed by scalar functions that are defined by a quotient of linear functions of the eigenvector. The exact linearization relies on an equivalent multiparameter eigenvalue problem (MEP) that contains the exact solutions of the NEPv. Due to the characterization of MEPs in terms of a generalized eigenvalue problem this provides a direct way to compute all NEPv solutions for small problems, and it opens up the possibility to develop locally convergent iterative methods for larger problems. Moreover, the linear formulation allows us to easily determine the number of solutions of the NEPv. We propose two numerical schemes that exploit the structure of the linearization: inverse iteration and residual inverse iteration. We show how symmetry in the MEP can be used to improve reliability and reduce computational cost of both methods. Two numerical examples verify the theoretical results, and a third example shows the potential of a hybrid scheme that is based on a combination of the two proposed methods.
AbstractList We present a method to linearize, without approximation, a specific class of eigenvalue problems with eigenvector nonlinearities (NEPv), where the nonlinearities are expressed by scalar functions that are defined by a quotient of linear functions of the eigenvector. The exact linearization relies on an equivalent multiparameter eigenvalue problem (MEP) that contains the exact solutions of the NEPv. Due to the characterization of MEPs in terms of a generalized eigenvalue problem this provides a direct way to compute all NEPv solutions for small problems, and it opens up the possibility to develop locally convergent iterative methods for larger problems. Moreover, the linear formulation allows us to easily determine the number of solutions of the NEPv. We propose two numerical schemes that exploit the structure of the linearization: inverse iteration and residual inverse iteration. We show how symmetry in the MEP can be used to improve reliability and reduce computational cost of both methods. Two numerical examples verify the theoretical results, and a third example shows the potential of a hybrid scheme that is based on a combination of the two proposed methods.
Author Upadhyaya, Parikshit
Meerbergen, Karl
Claes, Rob
Jarlebring, Elias
Author_xml – sequence: 1
  givenname: Rob
  orcidid: 0000-0001-6059-155X
  surname: Claes
  fullname: Claes, Rob
– sequence: 2
  givenname: Elias
  orcidid: 0000-0001-9443-8772
  surname: Jarlebring
  fullname: Jarlebring, Elias
– sequence: 3
  givenname: Karl
  orcidid: 0000-0002-1508-0248
  surname: Meerbergen
  fullname: Meerbergen, Karl
– sequence: 4
  givenname: Parikshit
  orcidid: 0000-0002-2157-6418
  surname: Upadhyaya
  fullname: Upadhyaya, Parikshit
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-323340$$DView record from Swedish Publication Index (Kungliga Tekniska Högskolan)
BookMark eNptkEtLAzEUhYNUsK1u_AXdCcJobh4zk2Wp9QFVNyruQpLeqdFxUpKo6K93pKIgrs6F853D5YzIoAsdErIP9AiAV8cMLkEwxeF-iwyBKllUULIBGdK6v0Wl6h0ySumRUiiFgiE5WPgOTfQfxrY4mfsVdq_ocoiTq9C1Gy97TLtkuzFtwr1vHZPb0_nN7LxYXJ9dzKaLwrFS5QKXfatpWNUoa21JGwGSC1tRYxzF2gKCUHLZ_2GlKgWrJUrquKtRoiurJR-TYtOb3nD9YvU6-mcT33UwXp_4u6kOcaWf8oPmjHNBe_5ww7sYUorY_CSA6q9J9O8kPUz_wM5nk33ocjS-_S_yCfilZLw
CitedBy_id crossref_primary_10_1137_23M1551961
crossref_primary_10_1137_22M1497985
crossref_primary_10_1137_22M1516324
Cites_doi 10.1137/17M115935X
10.3934/naco.2020019
10.1051/m2an:2000102
10.1051/m2an/2012008
10.1137/S1064827503422956
10.1137/060651653
10.1137/S0895479801395264
10.1002/nla.2033
10.1137/130910014
10.1137/18M1167681
10.1145/361573.361582
10.1002/nla.2005
10.1007/s10543-015-0566-9
10.1007/s10910-011-9863-y
10.1007/s11425-012-4363-5
10.1137/050628362
10.1137/080716293
10.1137/090756843
10.1137/18M1183558
10.1016/0009-2614(80)80396-4
10.1137/07070111X
10.1002/nla.2240
10.1137/130911032
10.1137/0722055
10.1080/03081087.2018.1536732
10.1137/140957962
10.1090/S0002-9904-1934-05899-3
10.1016/0024-3795(94)90396-4
10.1137/S0895479802418318
ContentType Journal Article
DBID AAYXX
CITATION
ADTPV
AOWAS
D8V
DOI 10.1137/21M142931X
DatabaseName CrossRef
SwePub
SwePub Articles
SWEPUB Kungliga Tekniska Högskolan
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1095-7162
EndPage 786
ExternalDocumentID oai_DiVA_org_kth_323340
10_1137_21M142931X
GroupedDBID -~X
.4S
.DC
123
186
4.4
7WY
7X2
7XC
88I
8CJ
8FE
8FG
8FH
8FL
8G5
8V8
AALVN
AASXH
AAYXX
ABDBF
ABDPE
ABJCF
ABKAD
ABMZU
ABUWG
ACGFO
ACGOD
ACIWK
ACPRK
ACUHS
ADBBV
AEMOZ
AENEX
AFFHD
AFFNX
AFKRA
AFRAH
AHQJS
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ANXRF
ARAPS
ARCSS
ATCPS
AZQEC
BBNVY
BENPR
BEZIV
BGLVJ
BHPHI
BPHCQ
CCPQU
CITATION
CS3
CZ9
D0L
D1I
D1J
D1K
DQ2
DU5
DWQXO
EAP
EBR
EBS
EBU
ECS
EDO
EJD
EMK
EST
ESX
FA8
FRNLG
GNUQQ
GUQSH
H13
HCIFZ
H~9
I-F
K1G
K6-
K60
K6V
K6~
K7-
KB.
KC.
L6V
LK5
LK8
M0C
M0K
M1Q
M2O
M2P
M7P
M7R
M7S
P1Q
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
PTHSS
PYCSY
RJG
RNS
RSI
TH9
TN5
TUS
YNT
ZKB
ZY4
ADTPV
AOWAS
D8V
ID FETCH-LOGICAL-c269t-ed491af27f9bbb60f41534b70aac0e8b1e1495d798b5964285e50c3c8e5ec67d3
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000903762900010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0895-4798
1095-7162
IngestDate Tue Nov 04 16:48:06 EST 2025
Tue Nov 18 21:09:03 EST 2025
Sat Nov 29 02:43:44 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c269t-ed491af27f9bbb60f41534b70aac0e8b1e1495d798b5964285e50c3c8e5ec67d3
ORCID 0000-0002-2157-6418
0000-0001-6059-155X
0000-0001-9443-8772
0000-0002-1508-0248
PageCount 23
ParticipantIDs swepub_primary_oai_DiVA_org_kth_323340
crossref_primary_10_1137_21M142931X
crossref_citationtrail_10_1137_21M142931X
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationTitle SIAM journal on matrix analysis and applications
PublicationYear 2022
References atypb9
atypb8
atypb19
atypb26
atypb27
atypb28
atypb22
atypb23
atypb24
atypb25
atypb20
atypb21
atypb15
atypb16
Hein M. (atypb10) 2010; 23
atypb17
atypb18
atypb11
atypb33
atypb12
atypb13
atypb35
atypb14
atypb30
atypb3
atypb2
atypb5
atypb4
atypb7
Upadhyaya P. (atypb34) 2021; 11
References_xml – ident: atypb7
  doi: 10.1137/17M115935X
– volume: 11
  start-page: 117
  year: 2021
  ident: atypb34
  publication-title: Numer. Algebra Control Optim.
  doi: 10.3934/naco.2020019
– ident: atypb8
  doi: 10.1051/m2an:2000102
– ident: atypb19
  doi: 10.1051/m2an/2012008
– ident: atypb3
  doi: 10.1137/S1064827503422956
– ident: atypb30
  doi: 10.1137/060651653
– ident: atypb13
  doi: 10.1137/S0895479801395264
– ident: atypb5
  doi: 10.1002/nla.2033
– ident: atypb15
  doi: 10.1137/130910014
– ident: atypb2
  doi: 10.1137/18M1167681
– ident: atypb4
  doi: 10.1145/361573.361582
– ident: atypb23
  doi: 10.1002/nla.2005
– ident: atypb25
  doi: 10.1007/s10543-015-0566-9
– ident: atypb27
  doi: 10.1007/s10910-011-9863-y
– ident: atypb9
  doi: 10.1007/s11425-012-4363-5
– ident: atypb22
  doi: 10.1137/050628362
– ident: atypb35
  doi: 10.1137/080716293
– ident: atypb18
  doi: 10.1137/090756843
– ident: atypb33
  doi: 10.1137/18M1183558
– ident: atypb26
  doi: 10.1016/0009-2614(80)80396-4
– ident: atypb16
  doi: 10.1137/07070111X
– ident: atypb12
  doi: 10.1002/nla.2240
– ident: atypb20
  doi: 10.1137/130911032
– volume: 23
  start-page: 847
  year: 2010
  ident: atypb10
  publication-title: Adv. Neural Inform. Process. Syst.
– ident: atypb24
  doi: 10.1137/0722055
– ident: atypb14
  doi: 10.1080/03081087.2018.1536732
– ident: atypb21
  doi: 10.1137/140957962
– ident: atypb28
  doi: 10.1090/S0002-9904-1934-05899-3
– ident: atypb17
  doi: 10.1016/0024-3795(94)90396-4
– ident: atypb11
  doi: 10.1137/S0895479802418318
SSID ssj0016491
Score 2.3537395
Snippet We present a method to linearize, without approximation, a specific class of eigenvalue problems with eigenvector nonlinearities (NEPv), where the...
SourceID swepub
crossref
SourceType Open Access Repository
Enrichment Source
Index Database
StartPage 764
SubjectTerms linearization
multiparameter eigenvalue problem
nonlinear eigenvalue problem
Title Linearizable Eigenvector Nonlinearities
URI https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-323340
Volume 43
WOSCitedRecordID wos000903762900010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1095-7162
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0016491
  issn: 0895-4798
  databaseCode: P5Z
  dateStart: 19880101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1095-7162
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0016491
  issn: 0895-4798
  databaseCode: BENPR
  dateStart: 19880101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1095-7162
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0016491
  issn: 0895-4798
  databaseCode: M2O
  dateStart: 19880101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ3Lj9MwEIet0uUAB8RTLC9VAoFQFZHEcR0fFyjiQKvVsov2FtmOvY22pFUaqu5_z_jR1BWLtBy4RFE0SmL_osmMH98g9IaLhJVasygvYx1lWcYiRggkrqVUmnAImHNti03Q6TQ_P2fHvd637V6Y9ZzWdb7ZsOV_lRqugdhm6-w_yN3dFC7AOYgOR5AdjjcSHrJLaJJZrDVXw7GBba7tyPxw6qgYvLEQ1TAq_Q75_I4hUQ9_Gm7_Zsi3wBILdA1muoPFPc7LnCxEtxTHTN-LxpdKGc8r3plPFGhod3v6bWjd6o6zJS9nV_yKu6C2qS5Xs6oNRyTSNBiR8I6LETNil4de1sGY_NeUBi6TOor5n67cwgDSZJLALxPbujrXobE_Vz-OikVzUVy2swKnGGfxLXSQUsLyPjr4OJ4en3SzSqPMVVDcvp-dCYdzQ9Hy6Fp46ofdM_eClT2UrA0_Tu-jez5vGBw5vR-gnqoforuTDrq7eoTehcoPAuUH-8o_Rmdfxqefvka-DkYk0xFrI1XCe3OdUs2EEKNYQ9CFM0FjzmWscpEok-aW0CBBmMkniSKxxDJXRMkRLfET1K8XtXqKBqmgEpy6AhuRaa0hPsESKxUTwhMuyCF6v21wIT0k3tQqmRc2WcS02HXOIXrd2S4dGuVaq7eu3zqbv6j27KaGz9Gd3Vf3AvXb5pd6iW7LdVutmlde898KxGl4
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Linearizable+Eigenvector+Nonlinearities&rft.jtitle=SIAM+journal+on+matrix+analysis+and+applications&rft.au=Claes%2C+Rob&rft.au=Jarlebring%2C+Elias&rft.au=Meerbergen%2C+Karl&rft.au=Upadhyaya%2C+Parikshit&rft.date=2022-01-01&rft.issn=0895-4798&rft.volume=43&rft.issue=2&rft.spage=764&rft_id=info:doi/10.1137%2F21M142931X&rft.externalDocID=oai_DiVA_org_kth_323340
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0895-4798&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0895-4798&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0895-4798&client=summon