ON THE EIGENVALUES AND THE NODAL POINTS OF THE EIGENFUNCTIONS OF SOME EIGENVALUE PROBLEMS WITH EIGENPARAMETER-DEPENDENT BOUNDARY CONDITIONS

Consider the following two eigenvalue problems: (0.1) \begin{cases}\label{eqn:1abs}y"(x)+[\lambda^2-q(x)]y(x)=0, 0 \leq x \leq \pi,\\[3pt] y(0)=0, ay'(\pi)+\lambda y(\pi)=0, \end{cases} and (0.2) \begin{cases} z"(x)+[\mu^2-q(x)]z(x)=0, 0 \leq x \leq \pi,\\[3pt] z'(0)=0, az'(...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Glasgow mathematical journal Ročník 63; číslo 1; s. 158 - 178
Hlavní autoři: CHAN, CHI-HUA, HUANG, PO-CHUN
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cambridge, UK Cambridge University Press 01.01.2021
Témata:
ISSN:0017-0895, 1469-509X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Consider the following two eigenvalue problems: (0.1) \begin{cases}\label{eqn:1abs}y"(x)+[\lambda^2-q(x)]y(x)=0, 0 \leq x \leq \pi,\\[3pt] y(0)=0, ay'(\pi)+\lambda y(\pi)=0, \end{cases} and (0.2) \begin{cases} z"(x)+[\mu^2-q(x)]z(x)=0, 0 \leq x \leq \pi,\\[3pt] z'(0)=0, az'(\pi)+\mu z(\pi)=0, \end{cases} where $q(x)$ is real-valued and integrable on [0, $\pi$ ]. Let $\{\lambda_n\}_{n\in \mathbb{Z}\setminus \{0\}}$ and $\{\mu_n\}_{n\in \mathbb{Z}\setminus \{0\}}$ denote the eigenvalues of equations (0.1) and (0.2), respectively. Then \[\cdots\lt\mu_{-3}\lt\lambda_{-2}\lt\mu_{-2}\lt\lambda_{-1}\lt\mu_{-1}\lt\mu_1\lt\lambda_1\lt\mu_2\lt\lambda_2\lt\mu_3\lt\cdots.\] Moreover, the number of zeros of the eigenfunctions of (0.1) ((0.2), respectively) corresponding to $\lambda_n$ ( $\mu_n$ , respectively) in (0, $\pi$ ) is equal to $|n|-1$ .
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0017-0895
1469-509X
DOI:10.1017/S0017089520000087