Sustainability analysis of zero energy consumption data centers with free cooling, waste heat reuse and renewable energy systems: A feasibility study

The energy consumption of data centers (DC) has increased rapidly over the past years. Regional studies are an effective way to find the optimal integration of renewable energy, free cooling and waste heat recovery technologies to improve the energy efficiency of DCs. In this study, the feasibility...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy (Oxford) Jg. 262; S. 125495
Hauptverfasser: Güğül, Gül Nihal, Gökçül, Furkan, Eicker, Ursula
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.01.2023
Schlagworte:
ISSN:0360-5442
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The energy consumption of data centers (DC) has increased rapidly over the past years. Regional studies are an effective way to find the optimal integration of renewable energy, free cooling and waste heat recovery technologies to improve the energy efficiency of DCs. In this study, the feasibility of a net zero energy DC was evaluated. As a case study a bank DC in Kocaeli, Turkey was monitored hourly for 10 months and monthly for 12 months during 2020. The most feasible way to reach zero energy was found to be a free cooling system combined with a PV generator, which has the lowest payback period (PBP) of 6 years at minimum initial retrofit cost. The free cooling system resulted in 83% reduction in cooling demand and an improvement in power usage effectiveness from 1.8 to 1.1. The PBP was also 6 years for a waste heat reuse system and for an outdoor location of the same DC, but with a higher initial cost than free cooling system. While increasing the U-value from 0.1 to 3 W/m2K caused to an increase in cooling demand by 11% for the Kocaeli weather conditions, a decrease in cooling demand would occur in colder climates. •One year of monitored electricity consumption data of a bank data center is used.•Feasibility of reaching net zero energy consumption data center has been evaluated.•Free cooling, waste heat reuse, building and PV scenarios are applied.•Net zero energy goal is achieved with 6 years of PBP.
AbstractList The energy consumption of data centers (DC) has increased rapidly over the past years. Regional studies are an effective way to find the optimal integration of renewable energy, free cooling and waste heat recovery technologies to improve the energy efficiency of DCs. In this study, the feasibility of a net zero energy DC was evaluated. As a case study a bank DC in Kocaeli, Turkey was monitored hourly for 10 months and monthly for 12 months during 2020. The most feasible way to reach zero energy was found to be a free cooling system combined with a PV generator, which has the lowest payback period (PBP) of 6 years at minimum initial retrofit cost. The free cooling system resulted in 83% reduction in cooling demand and an improvement in power usage effectiveness from 1.8 to 1.1. The PBP was also 6 years for a waste heat reuse system and for an outdoor location of the same DC, but with a higher initial cost than free cooling system. While increasing the U-value from 0.1 to 3 W/m2K caused to an increase in cooling demand by 11% for the Kocaeli weather conditions, a decrease in cooling demand would occur in colder climates. •One year of monitored electricity consumption data of a bank data center is used.•Feasibility of reaching net zero energy consumption data center has been evaluated.•Free cooling, waste heat reuse, building and PV scenarios are applied.•Net zero energy goal is achieved with 6 years of PBP.
The energy consumption of data centers (DC) has increased rapidly over the past years. Regional studies are an effective way to find the optimal integration of renewable energy, free cooling and waste heat recovery technologies to improve the energy efficiency of DCs. In this study, the feasibility of a net zero energy DC was evaluated. As a case study a bank DC in Kocaeli, Turkey was monitored hourly for 10 months and monthly for 12 months during 2020. The most feasible way to reach zero energy was found to be a free cooling system combined with a PV generator, which has the lowest payback period (PBP) of 6 years at minimum initial retrofit cost. The free cooling system resulted in 83% reduction in cooling demand and an improvement in power usage effectiveness from 1.8 to 1.1. The PBP was also 6 years for a waste heat reuse system and for an outdoor location of the same DC, but with a higher initial cost than free cooling system. While increasing the U-value from 0.1 to 3 W/m²K caused to an increase in cooling demand by 11% for the Kocaeli weather conditions, a decrease in cooling demand would occur in colder climates.
ArticleNumber 125495
Author Eicker, Ursula
Gökçül, Furkan
Güğül, Gül Nihal
Author_xml – sequence: 1
  givenname: Gül Nihal
  orcidid: 0000-0002-5927-3308
  surname: Güğül
  fullname: Güğül, Gül Nihal
  email: gul.gugul@selcuk.edu.tr
  organization: Department of Computer Engineering, Faculty of Technology, Selcuk University, Konya, Turkey
– sequence: 2
  givenname: Furkan
  orcidid: 0000-0003-0050-6987
  surname: Gökçül
  fullname: Gökçül, Furkan
  organization: Department of Computer Engineering, Institute of Science, Selcuk University, Konya, Turkey
– sequence: 3
  givenname: Ursula
  surname: Eicker
  fullname: Eicker, Ursula
  organization: Department of Buildings, Civil and Environmental Engineering, Concordia University, Montreal, Canada
BookMark eNqFkD1vFDEQhl0EKZ__gMIlBXfY3k-nQIoiAkiRKEhqyzeeTXzasw-Pl9Pmf_B_8WlDQwGVR_L7Ppp5ztlJiAEZeyvFWgrZftiuMWB6mtdKKLWWqql1c8LORNWKVVPX6pSdE22FEE2v9Rn79X2ibH2wGz_6PHMb7DiTJx4H_oIp8oXGIQaadvvsY-DOZssBQ8ZE_ODzMx8SYonE0Yen9_xgKSN_Rpt5womwQF2ZAh7sZsQ_RJpLakfX_IYPaMm_LkB5cvMlezPYkfDq9b1gj3efHm6_rO6_ff56e3O_AtXqvIJ2aJvBVlgOE1DJjcNB6r6GvoWm66BSunYChHS6ha7T2mkNdddX5b-3PVQX7N3C3af4Y0LKZucJcBxtwDiRUZ2qpOqbRpfo9RKFFIkSDgZ8tkcfOVk_GinM0b_ZmuU-c_RvFv-lXP9V3ie_s2n-X-3jUsPi4KfHZAg8BkDnE0I2Lvp_A34DWTKpnA
CitedBy_id crossref_primary_10_1016_j_energy_2025_137902
crossref_primary_10_1038_s41928_023_00982_4
crossref_primary_10_1016_j_renene_2025_123073
crossref_primary_10_1016_j_triboint_2023_109135
crossref_primary_10_1016_j_energy_2025_137689
crossref_primary_10_1016_j_enconman_2023_117344
crossref_primary_10_3390_app13137472
crossref_primary_10_1016_j_applthermaleng_2024_122479
crossref_primary_10_1016_j_est_2024_114935
crossref_primary_10_1016_j_est_2025_117853
crossref_primary_10_1016_j_apenergy_2025_125454
crossref_primary_10_1016_j_comcom_2025_108281
crossref_primary_10_1016_j_energy_2023_127043
crossref_primary_10_1016_j_ijmecsci_2025_110781
crossref_primary_10_1016_j_applthermaleng_2024_122439
crossref_primary_10_1016_j_renene_2024_120283
crossref_primary_10_1016_j_renene_2024_120440
crossref_primary_10_1016_j_apenergy_2025_126660
crossref_primary_10_1016_j_csite_2024_104915
crossref_primary_10_1080_03610918_2025_2508254
crossref_primary_10_1016_j_energy_2023_127335
crossref_primary_10_1016_j_fraope_2025_100290
crossref_primary_10_1016_j_enbuild_2025_115677
crossref_primary_10_1016_j_renene_2022_12_013
crossref_primary_10_1016_j_ijheatmasstransfer_2025_127746
crossref_primary_10_1186_s42162_024_00386_4
crossref_primary_10_1016_j_applthermaleng_2025_128350
crossref_primary_10_1016_j_enbenv_2024_07_006
crossref_primary_10_1016_j_energy_2025_137934
crossref_primary_10_1016_j_jobe_2024_108644
crossref_primary_10_1007_s40430_024_05048_w
crossref_primary_10_1016_j_energy_2024_133991
crossref_primary_10_1016_j_ijleo_2023_171492
crossref_primary_10_1016_j_enbuild_2023_112874
crossref_primary_10_1016_j_jclepro_2024_141482
crossref_primary_10_1016_j_energy_2023_126761
crossref_primary_10_1016_j_psep_2023_12_051
crossref_primary_10_1016_j_apenergy_2023_122590
crossref_primary_10_1016_j_enconman_2023_117756
crossref_primary_10_1016_j_jclepro_2024_143466
crossref_primary_10_1016_j_energy_2024_130703
crossref_primary_10_1016_j_energy_2025_138395
crossref_primary_10_1080_15567036_2023_2176572
crossref_primary_10_1016_j_scs_2025_106543
crossref_primary_10_1016_j_enbuild_2024_115206
crossref_primary_10_1016_j_energy_2023_128039
crossref_primary_10_3390_en17020445
crossref_primary_10_3390_su152215691
Cites_doi 10.1016/j.egypro.2017.12.703
10.1016/j.ijrefrig.2019.01.011
10.1109/MM.2014.6
10.31590/ejosat.419027
10.1016/j.enbuild.2019.109634
10.1126/science.aba3758
10.1504/IJGW.2021.116710
10.1016/j.apenergy.2014.10.067
10.1016/j.enconman.2015.01.088
10.3390/challe6010117
10.1016/j.applthermaleng.2019.114133
10.1109/ACCESS.2019.2930368
10.1016/j.enbuild.2016.06.011
10.1016/j.energy.2014.08.085
10.1016/j.apenergy.2012.10.046
10.1007/s10951-021-00700-y
10.1016/j.apenergy.2019.114109
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.energy.2022.125495
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
ExternalDocumentID 10_1016_j_energy_2022_125495
S0360544222023775
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
~HD
7S9
L.6
ID FETCH-LOGICAL-c269t-c6f65fa3e5440c31bdef1984c86c577c3294d0c01d96c7799d99c478386c8a8c3
ISICitedReferencesCount 57
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000868676500007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0360-5442
IngestDate Thu Oct 02 10:45:45 EDT 2025
Tue Nov 18 21:51:49 EST 2025
Sat Nov 29 07:19:37 EST 2025
Fri Feb 23 02:38:07 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Waste heat recovery
Renewable energy
Data center cooling
Net zero energy data centers
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c269t-c6f65fa3e5440c31bdef1984c86c577c3294d0c01d96c7799d99c478386c8a8c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0050-6987
0000-0002-5927-3308
PQID 2723128559
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2723128559
crossref_citationtrail_10_1016_j_energy_2022_125495
crossref_primary_10_1016_j_energy_2022_125495
elsevier_sciencedirect_doi_10_1016_j_energy_2022_125495
PublicationCentury 2000
PublicationDate 2023-01-01
2023-01-00
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Energy (Oxford)
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Jayantha Siriwardana (bib16) 2013; 104
Sheme, Holmbacka, Lafond, Lučanin, Frashëri (bib25) 2018; 17
Nadjahi, Louahlia, Lemasson (bib1) 2018; 19
(bib32) 2004
Jahangir, Mokhtari, Mousavi (bib29) 2021; 46
Arlitt, Bash, Blagodurov, Chen, Christian, Gmach, Hyser, Kumari, Liu, Marwah, McReynolds, Patel, Shah, Wang, Zhou (bib8) 2012
Crawley, Lawrie (bib33) 2019
Shrestha, Oppelt, Urbaneck, Càmara, Herena, Oró, Diaz, Salom, Trapman, Nijis, Dorp, Macías (bib6) 2015
Zhang, Wei, Zhang (bib19) 2017; 143
Díaz, Cáceres, Torres, Cardemil, Silva-Llanca (bib18) 2020; 208
Coskun, Erturk, Arcaklioğlu, Balci, Oktay (bib34) 2021; 24
(bib36) 2021
Johansson (bib12) 2020
Le, Liu, Wang, Tan, Ngoh (bib17) 2021
Mokhtari, Arabkoohsar (bib20) 2021; 47
Huang, Copertaro, Zhang, Shen, Löfgren, Rönnelid, Fahlen, Andersson, Svanfeldt (bib30) 2020; 258
Deymi-Dashtebayaz, Namanlo (bib21) 2019; 99
Pierson, Baudic, Caux, Celik, Costa, Grange, Haddad, Lecuivre, Nicod, Philippe, Rehn-Sonigo, Roche, Gustavo Rostirolla, Stolf, Thi, Varnier (bib27) 2019; 7
Wells (bib7) 2020
Agrawal, Khichar, Jain (bib23) 2016; 127
LuxConnect (bib10) 2021
(bib35) 2006
Haywood, Sherbeck, Phelan, Varsamopoulos, Gupta (bib14) 2015; 95
Beldiceanu, Feris, Gravey, Hasan, Jard, Ledoux, Li, Lime, Madi-Wamba, Menaud, Morel, Morvan, Moulinard, Orgerie, Pazat, Roux, Sharaiha (bib24) 2015
Andrae, Edler (bib4) 2015; 6
Ebrahimi, Jones, Fleischer (bib15) 2015; 139
Liu, Su, Dong, Sun, Shao, Huang (bib11) 2021
Deymi-Dashtebayaz, Namanlo, Arabkoohsa (bib22) 2019; 161
Koomey (bib2) 2011
Masanet, Shehabi, Lei, Smith, Koomey (bib3) 2020; 367
Goiri, Katsak, Le, Nguyen, Bianchini (bib9) 2014; 34
Güğül (bib31) 2018; 14
Haddad, Nicod, Péra, Varnie (bib28) 2021; 24
Gupta (bib26) 2019
Jouhara, Meskimmon (bib13) 2014; 77
Sverdlik (bib5) 2014
Sheme (10.1016/j.energy.2022.125495_bib25) 2018; 17
Andrae (10.1016/j.energy.2022.125495_bib4) 2015; 6
Liu (10.1016/j.energy.2022.125495_bib11) 2021
Masanet (10.1016/j.energy.2022.125495_bib3) 2020; 367
Arlitt (10.1016/j.energy.2022.125495_bib8) 2012
Coskun (10.1016/j.energy.2022.125495_bib34) 2021; 24
Goiri (10.1016/j.energy.2022.125495_bib9) 2014; 34
Jouhara (10.1016/j.energy.2022.125495_bib13) 2014; 77
Agrawal (10.1016/j.energy.2022.125495_bib23) 2016; 127
(10.1016/j.energy.2022.125495_bib36) 2021
Koomey (10.1016/j.energy.2022.125495_bib2) 2011
Deymi-Dashtebayaz (10.1016/j.energy.2022.125495_bib22) 2019; 161
Deymi-Dashtebayaz (10.1016/j.energy.2022.125495_bib21) 2019; 99
Zhang (10.1016/j.energy.2022.125495_bib19) 2017; 143
Haddad (10.1016/j.energy.2022.125495_bib28) 2021; 24
Wells (10.1016/j.energy.2022.125495_bib7) 2020
Le (10.1016/j.energy.2022.125495_bib17) 2021
Jayantha Siriwardana (10.1016/j.energy.2022.125495_bib16) 2013; 104
Ebrahimi (10.1016/j.energy.2022.125495_bib15) 2015; 139
Crawley (10.1016/j.energy.2022.125495_bib33) 2019
Gupta (10.1016/j.energy.2022.125495_bib26) 2019
Díaz (10.1016/j.energy.2022.125495_bib18) 2020; 208
Nadjahi (10.1016/j.energy.2022.125495_bib1) 2018; 19
Mokhtari (10.1016/j.energy.2022.125495_bib20) 2021; 47
Shrestha (10.1016/j.energy.2022.125495_bib6) 2015
Güğül (10.1016/j.energy.2022.125495_bib31) 2018; 14
(10.1016/j.energy.2022.125495_bib35) 2006
LuxConnect (10.1016/j.energy.2022.125495_bib10) 2021
Haywood (10.1016/j.energy.2022.125495_bib14) 2015; 95
Huang (10.1016/j.energy.2022.125495_bib30) 2020; 258
Sverdlik (10.1016/j.energy.2022.125495_bib5) 2014
Johansson (10.1016/j.energy.2022.125495_bib12) 2020
Pierson (10.1016/j.energy.2022.125495_bib27) 2019; 7
(10.1016/j.energy.2022.125495_bib32) 2004
Jahangir (10.1016/j.energy.2022.125495_bib29) 2021; 46
Beldiceanu (10.1016/j.energy.2022.125495_bib24) 2015
References_xml – volume: 139
  start-page: 384
  year: 2015
  end-page: 397
  ident: bib15
  article-title: Thermo-economic analysis of steady state waste heat recovery in data centers using absorption refrigeration
  publication-title: Appl Energy
– volume: 6
  start-page: 117
  year: 2015
  end-page: 157
  ident: bib4
  article-title: On global electricity usage of communication technology: trends to 2030
  publication-title: Challenges
– year: 2004
  ident: bib32
  article-title: ASHRAE thermal guidelines for data processing centers
– year: 2019
  ident: bib33
  article-title: Climate.OneBuilding.Org, 10 06
– volume: 17
  start-page: 96
  year: 2018
  end-page: 106
  ident: bib25
  article-title: Feasibility of using renewable energy to supply data centers in 60° north latitude
  publication-title: Sustain Comput: Inf Syst
– volume: 47
  year: 2021
  ident: bib20
  article-title: Feasibility study and multi-objective optimization of seawater cooling systems for data centers: a case study of Caspian Sea
  publication-title: Sustain Energy Technol Assessments
– volume: 161
  year: 2019
  ident: bib22
  article-title: Simultaneous use of air-side and water-side economizers with the air source heat pump in a DC for cooling and heating production
  publication-title: Appl Therm Eng
– volume: 258
  year: 2020
  ident: bib30
  article-title: A review of data centers as prosumers in district energy systems: renewable energy integration and waste heat reuse for district heating
  publication-title: Appl Energy
– year: 2006
  ident: bib35
  article-title: IPCC guidelines for
– volume: 104
  start-page: 207
  year: 2013
  end-page: 219
  ident: bib16
  article-title: Potential of air-side economizers for DC cooling: a case study for key Australian cities
  publication-title: Appl Energy
– volume: 95
  start-page: 297
  year: 2015
  end-page: 303
  ident: bib14
  article-title: The relationship among CPU utilization, temperature, and thermal power for waste heat utilization
  publication-title: Energy Convers Manag
– volume: 34
  start-page: 8
  year: 2014
  end-page: 16
  ident: bib9
  article-title: Designing and managing data centers powered by renewable energy
  publication-title: IEEE Micro
– year: 2020
  ident: bib12
  article-title: Cooling storage for 5G EDGE data center
– volume: 7
  start-page: 103209
  year: 2019
  end-page: 103230
  ident: bib27
  article-title: DATAZERO: DATAcenter with zero emission and robust management using renewable energy
  publication-title: IEEE Access
– year: 2020
  ident: bib7
  article-title: Apple expands renewable energy footprint in Europe, 3 9
– volume: 77
  start-page: 265
  year: 2014
  end-page: 270
  ident: bib13
  article-title: Heat pipe based thermal management systems for energy-efficient data centres
  publication-title: Energy
– volume: 143
  start-page: 410
  year: 2017
  end-page: 415
  ident: bib19
  article-title: Free cooling technologies for data centers: energy saving mechanism and applications
  publication-title: Energy Proc
– volume: 99
  start-page: 213
  year: 2019
  end-page: 225
  ident: bib21
  article-title: Potentiometric and economic analysis of using air and water-side economizers for data Centre cooling based on various weather conditions
  publication-title: Int J Refrig
– volume: 14
  start-page: 17
  year: 2018
  end-page: 22
  ident: bib31
  article-title: Free cooling potential of Turkey for datacenters
  publication-title: Eur J Sci Technol
– volume: 46
  year: 2021
  ident: bib29
  article-title: Performance evaluation and financial analysis of applying hybrid renewable systems in cooling unit of data centers – a case study
  publication-title: Sustain Energy Technol Assessments
– volume: 367
  start-page: 984
  year: 2020
  end-page: 986
  ident: bib3
  article-title: Recalibrating global DC energy-use estimates
  publication-title: Science
– year: 2012
  ident: bib8
  article-title: Towards the design and operation of net-zero energy data centers, 13
– year: 2021
  ident: bib36
  article-title: Chamber of Electrical Engineers of Turkey
  publication-title: Turk Electr Stat
– volume: 127
  start-page: 352
  year: 2016
  end-page: 359
  ident: bib23
  article-title: Transient simulation of wet cooling strategies for a DC in worldwide climate zones
  publication-title: Energy Build
– year: 2011
  ident: bib2
  article-title: Growth in DC electricity use 2005 to 2010
– year: 2019
  ident: bib26
  article-title: Energy-aware algorithms for greening internet-scale distributed systems using renewables
– volume: 24
  start-page: 523
  year: 2021
  end-page: 541
  ident: bib28
  article-title: Stand-alone renewable power system scheduling for a green data center using integer linear programming
  publication-title: J Sched
– volume: 208
  start-page: 109634
  year: 2020
  ident: bib18
  article-title: Effect of climate conditions on the thermodynamic performance of a DC cooling system under water-side economization
  publication-title: Energy Build
– year: 2021
  ident: bib10
  article-title: Green data centers in Luxembourg
– year: 2014
  ident: bib5
  article-title: Industry average DC PUE stays nearly flat over four years
– volume: 19
  start-page: 14
  year: 2018
  end-page: 28
  ident: bib1
  article-title: A review of thermal management and innovative cooling strategies for data center
  publication-title: Sustain Comput: Inf Syst
– volume: 24
  start-page: 281
  year: 2021
  end-page: 306
  ident: bib34
  article-title: The climate change impact projections on seasonal residential sector CO
  publication-title: Int J Glob Warming
– year: 2021
  ident: bib17
  article-title: Air free-cooled tropical data center: design, evaluation, and learned lessons
– year: 2015
  ident: bib24
  article-title: The EPOC project: energy proportional and opportunistic computing system
  publication-title: Proc. Int. Conf. Smart cities green ICT syst.
– start-page: 1
  year: 2021
  end-page: 14
  ident: bib11
  article-title: Optimal setting parameters of cooling system under different climate zones for DC energy efficiency
  publication-title: Int J Energy Res
– year: 2015
  ident: bib6
  article-title: Catalogue of advanced technical concepts for net zero energy data centres
– volume: 143
  start-page: 410
  year: 2017
  ident: 10.1016/j.energy.2022.125495_bib19
  article-title: Free cooling technologies for data centers: energy saving mechanism and applications
  publication-title: Energy Proc
  doi: 10.1016/j.egypro.2017.12.703
– volume: 99
  start-page: 213
  year: 2019
  ident: 10.1016/j.energy.2022.125495_bib21
  article-title: Potentiometric and economic analysis of using air and water-side economizers for data Centre cooling based on various weather conditions
  publication-title: Int J Refrig
  doi: 10.1016/j.ijrefrig.2019.01.011
– volume: 34
  start-page: 8
  year: 2014
  ident: 10.1016/j.energy.2022.125495_bib9
  article-title: Designing and managing data centers powered by renewable energy
  publication-title: IEEE Micro
  doi: 10.1109/MM.2014.6
– volume: 14
  start-page: 17
  year: 2018
  ident: 10.1016/j.energy.2022.125495_bib31
  article-title: Free cooling potential of Turkey for datacenters
  publication-title: Eur J Sci Technol
  doi: 10.31590/ejosat.419027
– volume: 208
  start-page: 109634
  year: 2020
  ident: 10.1016/j.energy.2022.125495_bib18
  article-title: Effect of climate conditions on the thermodynamic performance of a DC cooling system under water-side economization
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2019.109634
– year: 2006
  ident: 10.1016/j.energy.2022.125495_bib35
– volume: 367
  start-page: 984
  year: 2020
  ident: 10.1016/j.energy.2022.125495_bib3
  article-title: Recalibrating global DC energy-use estimates
  publication-title: Science
  doi: 10.1126/science.aba3758
– year: 2014
  ident: 10.1016/j.energy.2022.125495_bib5
– year: 2021
  ident: 10.1016/j.energy.2022.125495_bib10
– year: 2020
  ident: 10.1016/j.energy.2022.125495_bib7
– volume: 19
  start-page: 14
  year: 2018
  ident: 10.1016/j.energy.2022.125495_bib1
  article-title: A review of thermal management and innovative cooling strategies for data center
  publication-title: Sustain Comput: Inf Syst
– volume: 24
  start-page: 281
  issue: 3/4
  year: 2021
  ident: 10.1016/j.energy.2022.125495_bib34
  article-title: The climate change impact projections on seasonal residential sector CO2 emissions and energy demand forecasting for Turkish provinces
  publication-title: Int J Glob Warming
  doi: 10.1504/IJGW.2021.116710
– volume: 17
  start-page: 96
  year: 2018
  ident: 10.1016/j.energy.2022.125495_bib25
  article-title: Feasibility of using renewable energy to supply data centers in 60° north latitude
  publication-title: Sustain Comput: Inf Syst
– year: 2021
  ident: 10.1016/j.energy.2022.125495_bib36
  article-title: Chamber of Electrical Engineers of Turkey
  publication-title: Turk Electr Stat
– volume: 139
  start-page: 384
  year: 2015
  ident: 10.1016/j.energy.2022.125495_bib15
  article-title: Thermo-economic analysis of steady state waste heat recovery in data centers using absorption refrigeration
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.10.067
– volume: 95
  start-page: 297
  year: 2015
  ident: 10.1016/j.energy.2022.125495_bib14
  article-title: The relationship among CPU utilization, temperature, and thermal power for waste heat utilization
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2015.01.088
– year: 2012
  ident: 10.1016/j.energy.2022.125495_bib8
– volume: 6
  start-page: 117
  year: 2015
  ident: 10.1016/j.energy.2022.125495_bib4
  article-title: On global electricity usage of communication technology: trends to 2030
  publication-title: Challenges
  doi: 10.3390/challe6010117
– year: 2019
  ident: 10.1016/j.energy.2022.125495_bib26
– volume: 161
  year: 2019
  ident: 10.1016/j.energy.2022.125495_bib22
  article-title: Simultaneous use of air-side and water-side economizers with the air source heat pump in a DC for cooling and heating production
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2019.114133
– volume: 7
  start-page: 103209
  year: 2019
  ident: 10.1016/j.energy.2022.125495_bib27
  article-title: DATAZERO: DATAcenter with zero emission and robust management using renewable energy
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2930368
– start-page: 1
  year: 2021
  ident: 10.1016/j.energy.2022.125495_bib11
  article-title: Optimal setting parameters of cooling system under different climate zones for DC energy efficiency
  publication-title: Int J Energy Res
– volume: 46
  year: 2021
  ident: 10.1016/j.energy.2022.125495_bib29
  article-title: Performance evaluation and financial analysis of applying hybrid renewable systems in cooling unit of data centers – a case study
  publication-title: Sustain Energy Technol Assessments
– year: 2020
  ident: 10.1016/j.energy.2022.125495_bib12
– volume: 127
  start-page: 352
  year: 2016
  ident: 10.1016/j.energy.2022.125495_bib23
  article-title: Transient simulation of wet cooling strategies for a DC in worldwide climate zones
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2016.06.011
– volume: 47
  year: 2021
  ident: 10.1016/j.energy.2022.125495_bib20
  article-title: Feasibility study and multi-objective optimization of seawater cooling systems for data centers: a case study of Caspian Sea
  publication-title: Sustain Energy Technol Assessments
– volume: 77
  start-page: 265
  year: 2014
  ident: 10.1016/j.energy.2022.125495_bib13
  article-title: Heat pipe based thermal management systems for energy-efficient data centres
  publication-title: Energy
  doi: 10.1016/j.energy.2014.08.085
– year: 2021
  ident: 10.1016/j.energy.2022.125495_bib17
– year: 2015
  ident: 10.1016/j.energy.2022.125495_bib6
– year: 2011
  ident: 10.1016/j.energy.2022.125495_bib2
– year: 2015
  ident: 10.1016/j.energy.2022.125495_bib24
  article-title: The EPOC project: energy proportional and opportunistic computing system
– volume: 104
  start-page: 207
  year: 2013
  ident: 10.1016/j.energy.2022.125495_bib16
  article-title: Potential of air-side economizers for DC cooling: a case study for key Australian cities
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2012.10.046
– volume: 24
  start-page: 523
  year: 2021
  ident: 10.1016/j.energy.2022.125495_bib28
  article-title: Stand-alone renewable power system scheduling for a green data center using integer linear programming
  publication-title: J Sched
  doi: 10.1007/s10951-021-00700-y
– year: 2004
  ident: 10.1016/j.energy.2022.125495_bib32
– volume: 258
  year: 2020
  ident: 10.1016/j.energy.2022.125495_bib30
  article-title: A review of data centers as prosumers in district energy systems: renewable energy integration and waste heat reuse for district heating
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.114109
– year: 2019
  ident: 10.1016/j.energy.2022.125495_bib33
SSID ssj0005899
Score 2.5869148
Snippet The energy consumption of data centers (DC) has increased rapidly over the past years. Regional studies are an effective way to find the optimal integration of...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 125495
SubjectTerms case studies
cooling
Data center cooling
energy efficiency
feasibility studies
Net zero energy data centers
Renewable energy
renewable energy sources
Waste heat recovery
weather
Title Sustainability analysis of zero energy consumption data centers with free cooling, waste heat reuse and renewable energy systems: A feasibility study
URI https://dx.doi.org/10.1016/j.energy.2022.125495
https://www.proquest.com/docview/2723128559
Volume 262
WOSCitedRecordID wos000868676500007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect
  issn: 0360-5442
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0005899
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELbKLhJcECysWF4yEuJSUjWJE8fcyqrloVVBopV6ixzH0Xa3SkvS7hb-Bz-Cf4nHjzbloV0OXCIrnThp5os99sw3g9ALIsJCfTWBl2VMLVBILDyeUeKRQuYkYhnLglwXm6DDYTKZsE-t1g_HhbmY0bJM1mu2-K-qVueUsoE6-w_q3nSqTqi2Uro6KrWr47UU_9lRoqbawuaNrCPfZDVvS8P2E5p7aQYMCBNtQ5gmsHn1zmxRSQhjh4o-eiy45AoNYFUu25Vc1cbnANkwLzX1yvZp0kLXhu1eSG5Db782ktg6J4C5AHKdrk14_WZD4i347t8cg5XLBqZtioDZtgLvKZ_tSsfn2uFPG-KDVXW-RX5_6sJHxlW9mvHmZkcQNjY7HMmr60WE7AzgQRy0Fx0flrqR98dpwexQnHXM2-iongMrv50Gnet_-DEdjE9O0lF_Mnq5-OJBgTJw5NtqLTfQfkAjpgbQ_d77_uTDNp4o0cVKN0_oeJo6mPD3G__NDvrFItBmzuguumPXJ7hncHUPtWR5gG45-np9gA77W2qkErRzQ30ffd8FHnbAw_MCA_CweTrcAB4G4GELPAzAwwA8bIH3CmvYYYAd1rBTneZ4AzvXo4Xda9zDDdBhDboHaDzoj47febbohyeCmC09ERdxVPBQqnfYFaGf5bLwWUJEEouIUhEGjORd0fVzFgtKGcsZE4Qmofo94YkID9FeOS_lQ4RFmPk-lzSmviQ8z5RtKnjXzyiknWQ-PUKhU0EqbEZ8KMwyS13o41lq_kgKikuN4o6Qt7lqYTLCXCFPnXZTa9UaazVV6LziyucODKka9MGTx0s5X9VpQNWyLEiiiD26hsxjdHv7LT1Be8tqJZ-im-JiOa2rZxbHPwF3KdCh
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sustainability+analysis+of+zero+energy+consumption+data+centers+with+free+cooling%2C+waste+heat+reuse+and+renewable+energy+systems%3A+A+feasibility+study&rft.jtitle=Energy+%28Oxford%29&rft.au=G%C3%BC%C4%9F%C3%BCl%2C+G%C3%BCl+Nihal&rft.au=G%C3%B6k%C3%A7%C3%BCl%2C+Furkan&rft.au=Eicker%2C+Ursula&rft.date=2023-01-01&rft.issn=0360-5442&rft.volume=262+p.125495-&rft_id=info:doi/10.1016%2Fj.energy.2022.125495&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon