Sustainability analysis of zero energy consumption data centers with free cooling, waste heat reuse and renewable energy systems: A feasibility study
The energy consumption of data centers (DC) has increased rapidly over the past years. Regional studies are an effective way to find the optimal integration of renewable energy, free cooling and waste heat recovery technologies to improve the energy efficiency of DCs. In this study, the feasibility...
Saved in:
| Published in: | Energy (Oxford) Vol. 262; p. 125495 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.01.2023
|
| Subjects: | |
| ISSN: | 0360-5442 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The energy consumption of data centers (DC) has increased rapidly over the past years. Regional studies are an effective way to find the optimal integration of renewable energy, free cooling and waste heat recovery technologies to improve the energy efficiency of DCs. In this study, the feasibility of a net zero energy DC was evaluated. As a case study a bank DC in Kocaeli, Turkey was monitored hourly for 10 months and monthly for 12 months during 2020. The most feasible way to reach zero energy was found to be a free cooling system combined with a PV generator, which has the lowest payback period (PBP) of 6 years at minimum initial retrofit cost. The free cooling system resulted in 83% reduction in cooling demand and an improvement in power usage effectiveness from 1.8 to 1.1. The PBP was also 6 years for a waste heat reuse system and for an outdoor location of the same DC, but with a higher initial cost than free cooling system. While increasing the U-value from 0.1 to 3 W/m2K caused to an increase in cooling demand by 11% for the Kocaeli weather conditions, a decrease in cooling demand would occur in colder climates.
•One year of monitored electricity consumption data of a bank data center is used.•Feasibility of reaching net zero energy consumption data center has been evaluated.•Free cooling, waste heat reuse, building and PV scenarios are applied.•Net zero energy goal is achieved with 6 years of PBP. |
|---|---|
| AbstractList | The energy consumption of data centers (DC) has increased rapidly over the past years. Regional studies are an effective way to find the optimal integration of renewable energy, free cooling and waste heat recovery technologies to improve the energy efficiency of DCs. In this study, the feasibility of a net zero energy DC was evaluated. As a case study a bank DC in Kocaeli, Turkey was monitored hourly for 10 months and monthly for 12 months during 2020. The most feasible way to reach zero energy was found to be a free cooling system combined with a PV generator, which has the lowest payback period (PBP) of 6 years at minimum initial retrofit cost. The free cooling system resulted in 83% reduction in cooling demand and an improvement in power usage effectiveness from 1.8 to 1.1. The PBP was also 6 years for a waste heat reuse system and for an outdoor location of the same DC, but with a higher initial cost than free cooling system. While increasing the U-value from 0.1 to 3 W/m2K caused to an increase in cooling demand by 11% for the Kocaeli weather conditions, a decrease in cooling demand would occur in colder climates.
•One year of monitored electricity consumption data of a bank data center is used.•Feasibility of reaching net zero energy consumption data center has been evaluated.•Free cooling, waste heat reuse, building and PV scenarios are applied.•Net zero energy goal is achieved with 6 years of PBP. The energy consumption of data centers (DC) has increased rapidly over the past years. Regional studies are an effective way to find the optimal integration of renewable energy, free cooling and waste heat recovery technologies to improve the energy efficiency of DCs. In this study, the feasibility of a net zero energy DC was evaluated. As a case study a bank DC in Kocaeli, Turkey was monitored hourly for 10 months and monthly for 12 months during 2020. The most feasible way to reach zero energy was found to be a free cooling system combined with a PV generator, which has the lowest payback period (PBP) of 6 years at minimum initial retrofit cost. The free cooling system resulted in 83% reduction in cooling demand and an improvement in power usage effectiveness from 1.8 to 1.1. The PBP was also 6 years for a waste heat reuse system and for an outdoor location of the same DC, but with a higher initial cost than free cooling system. While increasing the U-value from 0.1 to 3 W/m²K caused to an increase in cooling demand by 11% for the Kocaeli weather conditions, a decrease in cooling demand would occur in colder climates. |
| ArticleNumber | 125495 |
| Author | Eicker, Ursula Gökçül, Furkan Güğül, Gül Nihal |
| Author_xml | – sequence: 1 givenname: Gül Nihal orcidid: 0000-0002-5927-3308 surname: Güğül fullname: Güğül, Gül Nihal email: gul.gugul@selcuk.edu.tr organization: Department of Computer Engineering, Faculty of Technology, Selcuk University, Konya, Turkey – sequence: 2 givenname: Furkan orcidid: 0000-0003-0050-6987 surname: Gökçül fullname: Gökçül, Furkan organization: Department of Computer Engineering, Institute of Science, Selcuk University, Konya, Turkey – sequence: 3 givenname: Ursula surname: Eicker fullname: Eicker, Ursula organization: Department of Buildings, Civil and Environmental Engineering, Concordia University, Montreal, Canada |
| BookMark | eNqFkD1vFDEQhl0EKZ__gMIlBXfY3k-nQIoiAkiRKEhqyzeeTXzasw-Pl9Pmf_B_8WlDQwGVR_L7Ppp5ztlJiAEZeyvFWgrZftiuMWB6mtdKKLWWqql1c8LORNWKVVPX6pSdE22FEE2v9Rn79X2ibH2wGz_6PHMb7DiTJx4H_oIp8oXGIQaadvvsY-DOZssBQ8ZE_ODzMx8SYonE0Yen9_xgKSN_Rpt5womwQF2ZAh7sZsQ_RJpLakfX_IYPaMm_LkB5cvMlezPYkfDq9b1gj3efHm6_rO6_ff56e3O_AtXqvIJ2aJvBVlgOE1DJjcNB6r6GvoWm66BSunYChHS6ha7T2mkNdddX5b-3PVQX7N3C3af4Y0LKZucJcBxtwDiRUZ2qpOqbRpfo9RKFFIkSDgZ8tkcfOVk_GinM0b_ZmuU-c_RvFv-lXP9V3ie_s2n-X-3jUsPi4KfHZAg8BkDnE0I2Lvp_A34DWTKpnA |
| CitedBy_id | crossref_primary_10_1016_j_energy_2025_137902 crossref_primary_10_1038_s41928_023_00982_4 crossref_primary_10_1016_j_renene_2025_123073 crossref_primary_10_1016_j_triboint_2023_109135 crossref_primary_10_1016_j_energy_2025_137689 crossref_primary_10_1016_j_enconman_2023_117344 crossref_primary_10_3390_app13137472 crossref_primary_10_1016_j_applthermaleng_2024_122479 crossref_primary_10_1016_j_est_2024_114935 crossref_primary_10_1016_j_est_2025_117853 crossref_primary_10_1016_j_apenergy_2025_125454 crossref_primary_10_1016_j_comcom_2025_108281 crossref_primary_10_1016_j_energy_2023_127043 crossref_primary_10_1016_j_ijmecsci_2025_110781 crossref_primary_10_1016_j_applthermaleng_2024_122439 crossref_primary_10_1016_j_renene_2024_120283 crossref_primary_10_1016_j_renene_2024_120440 crossref_primary_10_1016_j_apenergy_2025_126660 crossref_primary_10_1016_j_csite_2024_104915 crossref_primary_10_1080_03610918_2025_2508254 crossref_primary_10_1016_j_energy_2023_127335 crossref_primary_10_1016_j_fraope_2025_100290 crossref_primary_10_1016_j_enbuild_2025_115677 crossref_primary_10_1016_j_renene_2022_12_013 crossref_primary_10_1016_j_ijheatmasstransfer_2025_127746 crossref_primary_10_1186_s42162_024_00386_4 crossref_primary_10_1016_j_applthermaleng_2025_128350 crossref_primary_10_1016_j_enbenv_2024_07_006 crossref_primary_10_1016_j_energy_2025_137934 crossref_primary_10_1016_j_jobe_2024_108644 crossref_primary_10_1007_s40430_024_05048_w crossref_primary_10_1016_j_energy_2024_133991 crossref_primary_10_1016_j_ijleo_2023_171492 crossref_primary_10_1016_j_enbuild_2023_112874 crossref_primary_10_1016_j_jclepro_2024_141482 crossref_primary_10_1016_j_energy_2023_126761 crossref_primary_10_1016_j_psep_2023_12_051 crossref_primary_10_1016_j_apenergy_2023_122590 crossref_primary_10_1016_j_enconman_2023_117756 crossref_primary_10_1016_j_jclepro_2024_143466 crossref_primary_10_1016_j_energy_2024_130703 crossref_primary_10_1016_j_energy_2025_138395 crossref_primary_10_1080_15567036_2023_2176572 crossref_primary_10_1016_j_scs_2025_106543 crossref_primary_10_1016_j_enbuild_2024_115206 crossref_primary_10_1016_j_energy_2023_128039 crossref_primary_10_3390_en17020445 crossref_primary_10_3390_su152215691 |
| Cites_doi | 10.1016/j.egypro.2017.12.703 10.1016/j.ijrefrig.2019.01.011 10.1109/MM.2014.6 10.31590/ejosat.419027 10.1016/j.enbuild.2019.109634 10.1126/science.aba3758 10.1504/IJGW.2021.116710 10.1016/j.apenergy.2014.10.067 10.1016/j.enconman.2015.01.088 10.3390/challe6010117 10.1016/j.applthermaleng.2019.114133 10.1109/ACCESS.2019.2930368 10.1016/j.enbuild.2016.06.011 10.1016/j.energy.2014.08.085 10.1016/j.apenergy.2012.10.046 10.1007/s10951-021-00700-y 10.1016/j.apenergy.2019.114109 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd |
| Copyright_xml | – notice: 2022 Elsevier Ltd |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.energy.2022.125495 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Environmental Sciences |
| ExternalDocumentID | 10_1016_j_energy_2022_125495 S0360544222023775 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SPC SPCBC SSR SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABFNM ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AGQPQ AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW WUQ ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c269t-c6f65fa3e5440c31bdef1984c86c577c3294d0c01d96c7799d99c478386c8a8c3 |
| ISICitedReferencesCount | 57 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000868676500007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0360-5442 |
| IngestDate | Thu Oct 02 10:45:45 EDT 2025 Tue Nov 18 21:51:49 EST 2025 Sat Nov 29 07:19:37 EST 2025 Fri Feb 23 02:38:07 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Waste heat recovery Renewable energy Data center cooling Net zero energy data centers |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c269t-c6f65fa3e5440c31bdef1984c86c577c3294d0c01d96c7799d99c478386c8a8c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-0050-6987 0000-0002-5927-3308 |
| PQID | 2723128559 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_2723128559 crossref_citationtrail_10_1016_j_energy_2022_125495 crossref_primary_10_1016_j_energy_2022_125495 elsevier_sciencedirect_doi_10_1016_j_energy_2022_125495 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-01-01 2023-01-00 20230101 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Energy (Oxford) |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Jayantha Siriwardana (bib16) 2013; 104 Sheme, Holmbacka, Lafond, Lučanin, Frashëri (bib25) 2018; 17 Nadjahi, Louahlia, Lemasson (bib1) 2018; 19 (bib32) 2004 Jahangir, Mokhtari, Mousavi (bib29) 2021; 46 Arlitt, Bash, Blagodurov, Chen, Christian, Gmach, Hyser, Kumari, Liu, Marwah, McReynolds, Patel, Shah, Wang, Zhou (bib8) 2012 Crawley, Lawrie (bib33) 2019 Shrestha, Oppelt, Urbaneck, Càmara, Herena, Oró, Diaz, Salom, Trapman, Nijis, Dorp, Macías (bib6) 2015 Zhang, Wei, Zhang (bib19) 2017; 143 Díaz, Cáceres, Torres, Cardemil, Silva-Llanca (bib18) 2020; 208 Coskun, Erturk, Arcaklioğlu, Balci, Oktay (bib34) 2021; 24 (bib36) 2021 Johansson (bib12) 2020 Le, Liu, Wang, Tan, Ngoh (bib17) 2021 Mokhtari, Arabkoohsar (bib20) 2021; 47 Huang, Copertaro, Zhang, Shen, Löfgren, Rönnelid, Fahlen, Andersson, Svanfeldt (bib30) 2020; 258 Deymi-Dashtebayaz, Namanlo (bib21) 2019; 99 Pierson, Baudic, Caux, Celik, Costa, Grange, Haddad, Lecuivre, Nicod, Philippe, Rehn-Sonigo, Roche, Gustavo Rostirolla, Stolf, Thi, Varnier (bib27) 2019; 7 Wells (bib7) 2020 Agrawal, Khichar, Jain (bib23) 2016; 127 LuxConnect (bib10) 2021 (bib35) 2006 Haywood, Sherbeck, Phelan, Varsamopoulos, Gupta (bib14) 2015; 95 Beldiceanu, Feris, Gravey, Hasan, Jard, Ledoux, Li, Lime, Madi-Wamba, Menaud, Morel, Morvan, Moulinard, Orgerie, Pazat, Roux, Sharaiha (bib24) 2015 Andrae, Edler (bib4) 2015; 6 Ebrahimi, Jones, Fleischer (bib15) 2015; 139 Liu, Su, Dong, Sun, Shao, Huang (bib11) 2021 Deymi-Dashtebayaz, Namanlo, Arabkoohsa (bib22) 2019; 161 Koomey (bib2) 2011 Masanet, Shehabi, Lei, Smith, Koomey (bib3) 2020; 367 Goiri, Katsak, Le, Nguyen, Bianchini (bib9) 2014; 34 Güğül (bib31) 2018; 14 Haddad, Nicod, Péra, Varnie (bib28) 2021; 24 Gupta (bib26) 2019 Jouhara, Meskimmon (bib13) 2014; 77 Sverdlik (bib5) 2014 Sheme (10.1016/j.energy.2022.125495_bib25) 2018; 17 Andrae (10.1016/j.energy.2022.125495_bib4) 2015; 6 Liu (10.1016/j.energy.2022.125495_bib11) 2021 Masanet (10.1016/j.energy.2022.125495_bib3) 2020; 367 Arlitt (10.1016/j.energy.2022.125495_bib8) 2012 Coskun (10.1016/j.energy.2022.125495_bib34) 2021; 24 Goiri (10.1016/j.energy.2022.125495_bib9) 2014; 34 Jouhara (10.1016/j.energy.2022.125495_bib13) 2014; 77 Agrawal (10.1016/j.energy.2022.125495_bib23) 2016; 127 (10.1016/j.energy.2022.125495_bib36) 2021 Koomey (10.1016/j.energy.2022.125495_bib2) 2011 Deymi-Dashtebayaz (10.1016/j.energy.2022.125495_bib22) 2019; 161 Deymi-Dashtebayaz (10.1016/j.energy.2022.125495_bib21) 2019; 99 Zhang (10.1016/j.energy.2022.125495_bib19) 2017; 143 Haddad (10.1016/j.energy.2022.125495_bib28) 2021; 24 Wells (10.1016/j.energy.2022.125495_bib7) 2020 Le (10.1016/j.energy.2022.125495_bib17) 2021 Jayantha Siriwardana (10.1016/j.energy.2022.125495_bib16) 2013; 104 Ebrahimi (10.1016/j.energy.2022.125495_bib15) 2015; 139 Crawley (10.1016/j.energy.2022.125495_bib33) 2019 Gupta (10.1016/j.energy.2022.125495_bib26) 2019 Díaz (10.1016/j.energy.2022.125495_bib18) 2020; 208 Nadjahi (10.1016/j.energy.2022.125495_bib1) 2018; 19 Mokhtari (10.1016/j.energy.2022.125495_bib20) 2021; 47 Shrestha (10.1016/j.energy.2022.125495_bib6) 2015 Güğül (10.1016/j.energy.2022.125495_bib31) 2018; 14 (10.1016/j.energy.2022.125495_bib35) 2006 LuxConnect (10.1016/j.energy.2022.125495_bib10) 2021 Haywood (10.1016/j.energy.2022.125495_bib14) 2015; 95 Huang (10.1016/j.energy.2022.125495_bib30) 2020; 258 Sverdlik (10.1016/j.energy.2022.125495_bib5) 2014 Johansson (10.1016/j.energy.2022.125495_bib12) 2020 Pierson (10.1016/j.energy.2022.125495_bib27) 2019; 7 (10.1016/j.energy.2022.125495_bib32) 2004 Jahangir (10.1016/j.energy.2022.125495_bib29) 2021; 46 Beldiceanu (10.1016/j.energy.2022.125495_bib24) 2015 |
| References_xml | – volume: 139 start-page: 384 year: 2015 end-page: 397 ident: bib15 article-title: Thermo-economic analysis of steady state waste heat recovery in data centers using absorption refrigeration publication-title: Appl Energy – volume: 6 start-page: 117 year: 2015 end-page: 157 ident: bib4 article-title: On global electricity usage of communication technology: trends to 2030 publication-title: Challenges – year: 2004 ident: bib32 article-title: ASHRAE thermal guidelines for data processing centers – year: 2019 ident: bib33 article-title: Climate.OneBuilding.Org, 10 06 – volume: 17 start-page: 96 year: 2018 end-page: 106 ident: bib25 article-title: Feasibility of using renewable energy to supply data centers in 60° north latitude publication-title: Sustain Comput: Inf Syst – volume: 47 year: 2021 ident: bib20 article-title: Feasibility study and multi-objective optimization of seawater cooling systems for data centers: a case study of Caspian Sea publication-title: Sustain Energy Technol Assessments – volume: 161 year: 2019 ident: bib22 article-title: Simultaneous use of air-side and water-side economizers with the air source heat pump in a DC for cooling and heating production publication-title: Appl Therm Eng – volume: 258 year: 2020 ident: bib30 article-title: A review of data centers as prosumers in district energy systems: renewable energy integration and waste heat reuse for district heating publication-title: Appl Energy – year: 2006 ident: bib35 article-title: IPCC guidelines for – volume: 104 start-page: 207 year: 2013 end-page: 219 ident: bib16 article-title: Potential of air-side economizers for DC cooling: a case study for key Australian cities publication-title: Appl Energy – volume: 95 start-page: 297 year: 2015 end-page: 303 ident: bib14 article-title: The relationship among CPU utilization, temperature, and thermal power for waste heat utilization publication-title: Energy Convers Manag – volume: 34 start-page: 8 year: 2014 end-page: 16 ident: bib9 article-title: Designing and managing data centers powered by renewable energy publication-title: IEEE Micro – year: 2020 ident: bib12 article-title: Cooling storage for 5G EDGE data center – volume: 7 start-page: 103209 year: 2019 end-page: 103230 ident: bib27 article-title: DATAZERO: DATAcenter with zero emission and robust management using renewable energy publication-title: IEEE Access – year: 2020 ident: bib7 article-title: Apple expands renewable energy footprint in Europe, 3 9 – volume: 77 start-page: 265 year: 2014 end-page: 270 ident: bib13 article-title: Heat pipe based thermal management systems for energy-efficient data centres publication-title: Energy – volume: 143 start-page: 410 year: 2017 end-page: 415 ident: bib19 article-title: Free cooling technologies for data centers: energy saving mechanism and applications publication-title: Energy Proc – volume: 99 start-page: 213 year: 2019 end-page: 225 ident: bib21 article-title: Potentiometric and economic analysis of using air and water-side economizers for data Centre cooling based on various weather conditions publication-title: Int J Refrig – volume: 14 start-page: 17 year: 2018 end-page: 22 ident: bib31 article-title: Free cooling potential of Turkey for datacenters publication-title: Eur J Sci Technol – volume: 46 year: 2021 ident: bib29 article-title: Performance evaluation and financial analysis of applying hybrid renewable systems in cooling unit of data centers – a case study publication-title: Sustain Energy Technol Assessments – volume: 367 start-page: 984 year: 2020 end-page: 986 ident: bib3 article-title: Recalibrating global DC energy-use estimates publication-title: Science – year: 2012 ident: bib8 article-title: Towards the design and operation of net-zero energy data centers, 13 – year: 2021 ident: bib36 article-title: Chamber of Electrical Engineers of Turkey publication-title: Turk Electr Stat – volume: 127 start-page: 352 year: 2016 end-page: 359 ident: bib23 article-title: Transient simulation of wet cooling strategies for a DC in worldwide climate zones publication-title: Energy Build – year: 2011 ident: bib2 article-title: Growth in DC electricity use 2005 to 2010 – year: 2019 ident: bib26 article-title: Energy-aware algorithms for greening internet-scale distributed systems using renewables – volume: 24 start-page: 523 year: 2021 end-page: 541 ident: bib28 article-title: Stand-alone renewable power system scheduling for a green data center using integer linear programming publication-title: J Sched – volume: 208 start-page: 109634 year: 2020 ident: bib18 article-title: Effect of climate conditions on the thermodynamic performance of a DC cooling system under water-side economization publication-title: Energy Build – year: 2021 ident: bib10 article-title: Green data centers in Luxembourg – year: 2014 ident: bib5 article-title: Industry average DC PUE stays nearly flat over four years – volume: 19 start-page: 14 year: 2018 end-page: 28 ident: bib1 article-title: A review of thermal management and innovative cooling strategies for data center publication-title: Sustain Comput: Inf Syst – volume: 24 start-page: 281 year: 2021 end-page: 306 ident: bib34 article-title: The climate change impact projections on seasonal residential sector CO publication-title: Int J Glob Warming – year: 2021 ident: bib17 article-title: Air free-cooled tropical data center: design, evaluation, and learned lessons – year: 2015 ident: bib24 article-title: The EPOC project: energy proportional and opportunistic computing system publication-title: Proc. Int. Conf. Smart cities green ICT syst. – start-page: 1 year: 2021 end-page: 14 ident: bib11 article-title: Optimal setting parameters of cooling system under different climate zones for DC energy efficiency publication-title: Int J Energy Res – year: 2015 ident: bib6 article-title: Catalogue of advanced technical concepts for net zero energy data centres – volume: 143 start-page: 410 year: 2017 ident: 10.1016/j.energy.2022.125495_bib19 article-title: Free cooling technologies for data centers: energy saving mechanism and applications publication-title: Energy Proc doi: 10.1016/j.egypro.2017.12.703 – volume: 99 start-page: 213 year: 2019 ident: 10.1016/j.energy.2022.125495_bib21 article-title: Potentiometric and economic analysis of using air and water-side economizers for data Centre cooling based on various weather conditions publication-title: Int J Refrig doi: 10.1016/j.ijrefrig.2019.01.011 – volume: 34 start-page: 8 year: 2014 ident: 10.1016/j.energy.2022.125495_bib9 article-title: Designing and managing data centers powered by renewable energy publication-title: IEEE Micro doi: 10.1109/MM.2014.6 – volume: 14 start-page: 17 year: 2018 ident: 10.1016/j.energy.2022.125495_bib31 article-title: Free cooling potential of Turkey for datacenters publication-title: Eur J Sci Technol doi: 10.31590/ejosat.419027 – volume: 208 start-page: 109634 year: 2020 ident: 10.1016/j.energy.2022.125495_bib18 article-title: Effect of climate conditions on the thermodynamic performance of a DC cooling system under water-side economization publication-title: Energy Build doi: 10.1016/j.enbuild.2019.109634 – year: 2006 ident: 10.1016/j.energy.2022.125495_bib35 – volume: 367 start-page: 984 year: 2020 ident: 10.1016/j.energy.2022.125495_bib3 article-title: Recalibrating global DC energy-use estimates publication-title: Science doi: 10.1126/science.aba3758 – year: 2014 ident: 10.1016/j.energy.2022.125495_bib5 – year: 2021 ident: 10.1016/j.energy.2022.125495_bib10 – year: 2020 ident: 10.1016/j.energy.2022.125495_bib7 – volume: 19 start-page: 14 year: 2018 ident: 10.1016/j.energy.2022.125495_bib1 article-title: A review of thermal management and innovative cooling strategies for data center publication-title: Sustain Comput: Inf Syst – volume: 24 start-page: 281 issue: 3/4 year: 2021 ident: 10.1016/j.energy.2022.125495_bib34 article-title: The climate change impact projections on seasonal residential sector CO2 emissions and energy demand forecasting for Turkish provinces publication-title: Int J Glob Warming doi: 10.1504/IJGW.2021.116710 – volume: 17 start-page: 96 year: 2018 ident: 10.1016/j.energy.2022.125495_bib25 article-title: Feasibility of using renewable energy to supply data centers in 60° north latitude publication-title: Sustain Comput: Inf Syst – year: 2021 ident: 10.1016/j.energy.2022.125495_bib36 article-title: Chamber of Electrical Engineers of Turkey publication-title: Turk Electr Stat – volume: 139 start-page: 384 year: 2015 ident: 10.1016/j.energy.2022.125495_bib15 article-title: Thermo-economic analysis of steady state waste heat recovery in data centers using absorption refrigeration publication-title: Appl Energy doi: 10.1016/j.apenergy.2014.10.067 – volume: 95 start-page: 297 year: 2015 ident: 10.1016/j.energy.2022.125495_bib14 article-title: The relationship among CPU utilization, temperature, and thermal power for waste heat utilization publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2015.01.088 – year: 2012 ident: 10.1016/j.energy.2022.125495_bib8 – volume: 6 start-page: 117 year: 2015 ident: 10.1016/j.energy.2022.125495_bib4 article-title: On global electricity usage of communication technology: trends to 2030 publication-title: Challenges doi: 10.3390/challe6010117 – year: 2019 ident: 10.1016/j.energy.2022.125495_bib26 – volume: 161 year: 2019 ident: 10.1016/j.energy.2022.125495_bib22 article-title: Simultaneous use of air-side and water-side economizers with the air source heat pump in a DC for cooling and heating production publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2019.114133 – volume: 7 start-page: 103209 year: 2019 ident: 10.1016/j.energy.2022.125495_bib27 article-title: DATAZERO: DATAcenter with zero emission and robust management using renewable energy publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2930368 – start-page: 1 year: 2021 ident: 10.1016/j.energy.2022.125495_bib11 article-title: Optimal setting parameters of cooling system under different climate zones for DC energy efficiency publication-title: Int J Energy Res – volume: 46 year: 2021 ident: 10.1016/j.energy.2022.125495_bib29 article-title: Performance evaluation and financial analysis of applying hybrid renewable systems in cooling unit of data centers – a case study publication-title: Sustain Energy Technol Assessments – year: 2020 ident: 10.1016/j.energy.2022.125495_bib12 – volume: 127 start-page: 352 year: 2016 ident: 10.1016/j.energy.2022.125495_bib23 article-title: Transient simulation of wet cooling strategies for a DC in worldwide climate zones publication-title: Energy Build doi: 10.1016/j.enbuild.2016.06.011 – volume: 47 year: 2021 ident: 10.1016/j.energy.2022.125495_bib20 article-title: Feasibility study and multi-objective optimization of seawater cooling systems for data centers: a case study of Caspian Sea publication-title: Sustain Energy Technol Assessments – volume: 77 start-page: 265 year: 2014 ident: 10.1016/j.energy.2022.125495_bib13 article-title: Heat pipe based thermal management systems for energy-efficient data centres publication-title: Energy doi: 10.1016/j.energy.2014.08.085 – year: 2021 ident: 10.1016/j.energy.2022.125495_bib17 – year: 2015 ident: 10.1016/j.energy.2022.125495_bib6 – year: 2011 ident: 10.1016/j.energy.2022.125495_bib2 – year: 2015 ident: 10.1016/j.energy.2022.125495_bib24 article-title: The EPOC project: energy proportional and opportunistic computing system – volume: 104 start-page: 207 year: 2013 ident: 10.1016/j.energy.2022.125495_bib16 article-title: Potential of air-side economizers for DC cooling: a case study for key Australian cities publication-title: Appl Energy doi: 10.1016/j.apenergy.2012.10.046 – volume: 24 start-page: 523 year: 2021 ident: 10.1016/j.energy.2022.125495_bib28 article-title: Stand-alone renewable power system scheduling for a green data center using integer linear programming publication-title: J Sched doi: 10.1007/s10951-021-00700-y – year: 2004 ident: 10.1016/j.energy.2022.125495_bib32 – volume: 258 year: 2020 ident: 10.1016/j.energy.2022.125495_bib30 article-title: A review of data centers as prosumers in district energy systems: renewable energy integration and waste heat reuse for district heating publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.114109 – year: 2019 ident: 10.1016/j.energy.2022.125495_bib33 |
| SSID | ssj0005899 |
| Score | 2.5869148 |
| Snippet | The energy consumption of data centers (DC) has increased rapidly over the past years. Regional studies are an effective way to find the optimal integration of... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 125495 |
| SubjectTerms | case studies cooling Data center cooling energy efficiency feasibility studies Net zero energy data centers Renewable energy renewable energy sources Waste heat recovery weather |
| Title | Sustainability analysis of zero energy consumption data centers with free cooling, waste heat reuse and renewable energy systems: A feasibility study |
| URI | https://dx.doi.org/10.1016/j.energy.2022.125495 https://www.proquest.com/docview/2723128559 |
| Volume | 262 |
| WOSCitedRecordID | wos000868676500007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0360-5442 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0005899 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbKhgQvCAYT4yYj8VZStbETx7yNqeUiNCGxSX2LXMfWulXplLRb4X_wk_hfHN_SdFzGHlClyErsEyvn6_Gxfb5jhF7BGCpJwmmkU2aOMKM6EprCrJXpAkwy_FzK_E_s8DAbj_nnTudH4MJczFhZZqsVP_-vqoZ7oGxDnb2BuhuhcAPKoHS4gtrh-k-K_xIoUVPrYYtW1pFvqpp3lWP7Scu9dAbDhIl2TZimYfPalVldKRPGbk70sbbgUgAajFe56FZqWbs9B5MN89JSr7xMlxa6dmx3rYQPvf3aSmIbNgFcA5PrdOXC65sFiXdm7_7tgfFy-ciV3SFgvgzgPRGzzdrpmd3wZ63qo2V1tkb-cBrCR46rejkT7cWOmLQWOwLJqx8llG4Y8Njbc2eCB2bKm_x2dHALFac991F68IK4t66-mYz7yiDZhC6GqLjT3EnJjZTcSbmFtmOWcDCu2_sfhuOP61ijzB5k2vQ-cDhtoOGvvfmTj3TFW7Au0NF9dM_PXfC-w9wD1FHlDroTqO31DtodrmmTUNGPG_VD9H0TlDiAEs81NqDErne4BUpsQIk9KLEBJTagxB6Ur7GFJDaQxBaSILTADSSDRA_JN3gftwCJLSAfoePR8OjgfeQPBIlknPJFJFOdJloQBd8QTMxgUig94BmVWSoTxiSJOS36sj8oeCoZ47zgXFKWEXieiUySXbRVzkv1GGFJJ_CQ9EUsCNWUTGKVsAmII1KxRKs9RIIKcumz5ZtDW2b53wCwh6Km1bnLFnNNfRa0m3uP13myOUD2mpYvAxhyGBDMLp8o1XxZ5zGDKVucJQl_csPePEV31_-5Z2hrUS3Vc3RbXiymdfXCY_ondkjcbA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sustainability+analysis+of+zero+energy+consumption+data+centers+with+free+cooling%2C+waste+heat+reuse+and+renewable+energy+systems%3A+A+feasibility+study&rft.jtitle=Energy+%28Oxford%29&rft.au=G%C3%BC%C4%9F%C3%BCl%2C+G%C3%BCl+Nihal&rft.au=G%C3%B6k%C3%A7%C3%BCl%2C+Furkan&rft.au=Eicker%2C+Ursula&rft.date=2023-01-01&rft.issn=0360-5442&rft.volume=262&rft.spage=125495&rft_id=info:doi/10.1016%2Fj.energy.2022.125495&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_energy_2022_125495 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |