Obstacle avoidance control of UGV based on adaptive-dynamic control barrier function in unstructured terrain

The widely used model predictive control of discrete-time control barrier functions (MPC-CBF) has difficulties in obstacle avoidance for unmanned ground vehicles (UGVs) in complex terrain. To address this problem, we propose adaptive dynamic control barrier functions (AD-CBF). AD-CBF is able to adap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Robotica Jg. 42; H. 9; S. 2991 - 3004
Hauptverfasser: Guo, Liang, Zhang, Suyu, Zhao, Wenlong, Liu, Jun, Liu, Ruijun
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Cambridge, UK Cambridge University Press 01.09.2024
Schlagworte:
ISSN:0263-5747, 1469-8668
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The widely used model predictive control of discrete-time control barrier functions (MPC-CBF) has difficulties in obstacle avoidance for unmanned ground vehicles (UGVs) in complex terrain. To address this problem, we propose adaptive dynamic control barrier functions (AD-CBF). AD-CBF is able to adaptively select an extended class of functions of CBF to optimize the feasibility and flexibility of obstacle avoidance behaviors based on the relative positions of the UGV and the obstacle, which in turn improves the obstacle avoidance speed and safety of the MPC algorithm when integrated with MPC. The algorithmic constraints of the CBF employ hierarchical density-based spatial clustering of applications with noise (HDBSCAN) for parameterization of dynamic obstacle information and unscaled Kalman filter (UKF) for trajectory prediction. Through simulations and practical experiments, we demonstrate the effectiveness of the AD-CBF-MPC algorithm in planning optimal obstacle avoidance paths in dynamic environments, overcoming the limitations of the point-by-point feasibility of MPC-CBF.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0263-5747
1469-8668
DOI:10.1017/S026357472400122X