Well-posedness of Third Order Differential Equations in Hölder Continuous Function Spaces

In this paper, by using operator-valued ${\dot{C}}^{\unicode[STIX]{x1D6FC}}$ -Fourier multiplier results on vector-valued Hölder continuous function spaces, we give a characterization of the $C^{\unicode[STIX]{x1D6FC}}$ -well-posedness for the third order differential equations $au^{\prime \prime \p...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Canadian mathematical bulletin Ročník 62; číslo 4; s. 715 - 726
Hlavní autoři: Bu, Shangquan, Cai, Gang
Médium: Journal Article
Jazyk:angličtina
Vydáno: Canada Canadian Mathematical Society 01.12.2019
Cambridge University Press
Témata:
ISSN:0008-4395, 1496-4287
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, by using operator-valued ${\dot{C}}^{\unicode[STIX]{x1D6FC}}$ -Fourier multiplier results on vector-valued Hölder continuous function spaces, we give a characterization of the $C^{\unicode[STIX]{x1D6FC}}$ -well-posedness for the third order differential equations $au^{\prime \prime \prime }(t)+u^{\prime \prime }(t)=Au(t)+Bu^{\prime }(t)+f(t)$ , ( $t\in \mathbb{R}$ ), where $A,B$ are closed linear operators on a Banach space $X$ such that $D(A)\subset D(B)$ , $a\in \mathbb{C}$ and $0<\unicode[STIX]{x1D6FC}<1$ .
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0008-4395
1496-4287
DOI:10.4153/S0008439518000048