Well-posedness of Third Order Differential Equations in Hölder Continuous Function Spaces
In this paper, by using operator-valued ${\dot{C}}^{\unicode[STIX]{x1D6FC}}$ -Fourier multiplier results on vector-valued Hölder continuous function spaces, we give a characterization of the $C^{\unicode[STIX]{x1D6FC}}$ -well-posedness for the third order differential equations $au^{\prime \prime \p...
Uloženo v:
| Vydáno v: | Canadian mathematical bulletin Ročník 62; číslo 4; s. 715 - 726 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Canada
Canadian Mathematical Society
01.12.2019
Cambridge University Press |
| Témata: | |
| ISSN: | 0008-4395, 1496-4287 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, by using operator-valued
${\dot{C}}^{\unicode[STIX]{x1D6FC}}$
-Fourier multiplier results on vector-valued Hölder continuous function spaces, we give a characterization of the
$C^{\unicode[STIX]{x1D6FC}}$
-well-posedness for the third order differential equations
$au^{\prime \prime \prime }(t)+u^{\prime \prime }(t)=Au(t)+Bu^{\prime }(t)+f(t)$
, (
$t\in \mathbb{R}$
), where
$A,B$
are closed linear operators on a Banach space
$X$
such that
$D(A)\subset D(B)$
,
$a\in \mathbb{C}$
and
$0<\unicode[STIX]{x1D6FC}<1$
. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0008-4395 1496-4287 |
| DOI: | 10.4153/S0008439518000048 |