Structural and computational properties of possibly singular semiseparable matrices

A classical result of structured numerical linear algebra states that the inverse of a nonsingular semiseparable matrix is a tridiagonal matrix. Such a property of a semiseparable matrix has been proved to be useful for devising linear complexity solvers, for establishing recurrence relations among...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Linear algebra and its applications Ročník 340; číslo 1-3; s. 183 - 198
Hlavní autori: Fasino, D., Gemignani, L.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York, NY Elsevier Inc 01.01.2002
Elsevier Science
Predmet:
ISSN:0024-3795, 1873-1856
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:A classical result of structured numerical linear algebra states that the inverse of a nonsingular semiseparable matrix is a tridiagonal matrix. Such a property of a semiseparable matrix has been proved to be useful for devising linear complexity solvers, for establishing recurrence relations among its columns or rows and, moreover, for efficiently evaluating its characteristic polynomial. In this paper, we provide sparse structured representations of a semiseparable matrix A which hold independently of the fact that A is singular or not. These relations are found by pointing out the band structure of the inverse of the sum of A plus a certain sparse perturbation of minimal rank. Further, they can be used to determine in a computationally efficient way both a reflexive generalized inverse of A and its characteristic polynomial.
ISSN:0024-3795
1873-1856
DOI:10.1016/S0024-3795(01)00404-9