Detection of homogeneous production batches of semiconductor devices by greedy heuristic clustering algorithms with special distance metrics
Authors present a comparative efficiency analysis of application of k-means and k-medoids clustering models for solving the problem of grouping of semiconductor devices into homogeneous production batches using three types of metrics: Euclidean distance, Mahalanobis distance, Manhattan distance.
Uložené v:
| Vydané v: | IOP conference series. Materials Science and Engineering Ročník 734; číslo 1; s. 12104 - 12108 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Bristol
IOP Publishing
01.01.2020
|
| Predmet: | |
| ISSN: | 1757-8981, 1757-899X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Authors present a comparative efficiency analysis of application of k-means and k-medoids clustering models for solving the problem of grouping of semiconductor devices into homogeneous production batches using three types of metrics: Euclidean distance, Mahalanobis distance, Manhattan distance. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1757-8981 1757-899X |
| DOI: | 10.1088/1757-899X/734/1/012104 |