Detection of homogeneous production batches of semiconductor devices by greedy heuristic clustering algorithms with special distance metrics

Authors present a comparative efficiency analysis of application of k-means and k-medoids clustering models for solving the problem of grouping of semiconductor devices into homogeneous production batches using three types of metrics: Euclidean distance, Mahalanobis distance, Manhattan distance.

Uložené v:
Podrobná bibliografia
Vydané v:IOP conference series. Materials Science and Engineering Ročník 734; číslo 1; s. 12104 - 12108
Hlavní autori: Shkaberina, G Sh, Rozhnov, I P, Popov, V P, Kazakovtsev, L A, Lapunova, E V
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Bristol IOP Publishing 01.01.2020
Predmet:
ISSN:1757-8981, 1757-899X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Authors present a comparative efficiency analysis of application of k-means and k-medoids clustering models for solving the problem of grouping of semiconductor devices into homogeneous production batches using three types of metrics: Euclidean distance, Mahalanobis distance, Manhattan distance.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1757-8981
1757-899X
DOI:10.1088/1757-899X/734/1/012104