Method of Y-Mappings for Study of Multiparameter Nonlinear Eigenvalue Problems

For the study of nonlinear multiparameter eigenvalue problems, a method of Y -mappings, making it possible to prove the existence of solutions, is proposed. The problem of propagation of coupled polarized electromagnetic waves in a nonlinear layer with saturating nonlinearity is studied. The concept...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational mathematics and mathematical physics Jg. 62; H. 1; S. 150 - 156
1. Verfasser: Smirnov, Yu. G.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Moscow Pleiades Publishing 01.01.2022
Springer Nature B.V
Schlagworte:
ISSN:0965-5425, 1555-6662
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract For the study of nonlinear multiparameter eigenvalue problems, a method of Y -mappings, making it possible to prove the existence of solutions, is proposed. The problem of propagation of coupled polarized electromagnetic waves in a nonlinear layer with saturating nonlinearity is studied. The concept of a Y -mapping, which puts into correspondence to the potential a special nonlinear function of several arguments: eigenfunctions of a linear problem, is defined. The multiparameter nonlinear eigenvalue problem is reduced to the problem of finding fixed points of Y -mappings. Using the Schauder theorem, the existence of an infinite set of fixed points of Y -mappings and, accordingly, solutions in a nonlinear multiparameter eigenvalue problem for sufficiently small values of the nonlinearity coefficient is proved.
AbstractList For the study of nonlinear multiparameter eigenvalue problems, a method of Y-mappings, making it possible to prove the existence of solutions, is proposed. The problem of propagation of coupled polarized electromagnetic waves in a nonlinear layer with saturating nonlinearity is studied. The concept of a Y-mapping, which puts into correspondence to the potential a special nonlinear function of several arguments: eigenfunctions of a linear problem, is defined. The multiparameter nonlinear eigenvalue problem is reduced to the problem of finding fixed points of Y-mappings. Using the Schauder theorem, the existence of an infinite set of fixed points of Y-mappings and, accordingly, solutions in a nonlinear multiparameter eigenvalue problem for sufficiently small values of the nonlinearity coefficient is proved.
For the study of nonlinear multiparameter eigenvalue problems, a method of Y -mappings, making it possible to prove the existence of solutions, is proposed. The problem of propagation of coupled polarized electromagnetic waves in a nonlinear layer with saturating nonlinearity is studied. The concept of a Y -mapping, which puts into correspondence to the potential a special nonlinear function of several arguments: eigenfunctions of a linear problem, is defined. The multiparameter nonlinear eigenvalue problem is reduced to the problem of finding fixed points of Y -mappings. Using the Schauder theorem, the existence of an infinite set of fixed points of Y -mappings and, accordingly, solutions in a nonlinear multiparameter eigenvalue problem for sufficiently small values of the nonlinearity coefficient is proved.
Author Smirnov, Yu. G.
Author_xml – sequence: 1
  givenname: Yu. G.
  surname: Smirnov
  fullname: Smirnov, Yu. G.
  email: smirnovyug@mail.ru
  organization: Penza State University
BookMark eNp1kFFLwzAUhYNMcJv-AN8CPldv0iZLH2VMJ2xTmD74VNL2ZnZ0SU1aYf_elgk-iE8XzvnOuXAmZGSdRUKuGdwyFid3W0ilEAkXnAMDxuCMjJkQIpJS8hEZD3Y0-BdkEsIegMlUxWOyWWP74UrqDH2P1rppKrsL1DhPt21XHgd93dVt1WivD9iipxtn68qi9nRR7dB-6bpD-uJdXuMhXJJzo-uAVz93St4eFq_zZbR6fnya36-igkvVRiY2MNMgpU50mhuTGFmoJMZYlyBBlwZ7HxQkAoGDyhmTgjM1y5koC6HieEpuTr2Nd58dhjbbu87b_mXGJVczJXkqeoqdqMK7EDyarPHVQftjxiAbZsv-zNZn-CkTetbu0P82_x_6BvB8b40
Cites_doi 10.1070/SM8741
10.1016/0022-1236(73)90051-7
10.1007/978-3-642-53393-8
10.1070/RM1996v051n03ABEH002911
10.1063/1.4799276
10.1007/978-3-0348-5485-6
10.1063/1.4769885
10.14760/OWP-2014-15
10.1080/09500340.2019.1695004
10.1063/1.4817388
ContentType Journal Article
Copyright Pleiades Publishing, Ltd. 2022. ISSN 0965-5425, Computational Mathematics and Mathematical Physics, 2022, Vol. 62, No. 1, pp. 150–156. © Pleiades Publishing, Ltd., 2022. Russian Text © The Author(s), 2022, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2022, Vol. 62, No. 1, pp. 159–165.
Copyright_xml – notice: Pleiades Publishing, Ltd. 2022. ISSN 0965-5425, Computational Mathematics and Mathematical Physics, 2022, Vol. 62, No. 1, pp. 150–156. © Pleiades Publishing, Ltd., 2022. Russian Text © The Author(s), 2022, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2022, Vol. 62, No. 1, pp. 159–165.
DBID AAYXX
CITATION
7SC
7TB
7U5
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1134/S0965542522010110
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 1555-6662
EndPage 156
ExternalDocumentID 10_1134_S0965542522010110
GroupedDBID --K
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.VR
06D
0R~
0VY
1B1
1N0
29F
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3V.
4.4
408
40D
40E
5GY
5VS
6J9
6NX
7WY
88I
8FE
8FG
8FH
8FL
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDZT
ABECU
ABEFU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AFBBN
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BA0
BAPOH
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GROUPED_ABI_INFORM_COMPLETE
H13
HCIFZ
HF~
HG6
HLICF
HMJXF
HRMNR
HVGLF
HZ~
H~9
I-F
IHE
IJ-
IKXTQ
IWAJR
IXD
I~X
I~Z
J-C
JBSCW
JZLTJ
K60
K6V
K6~
K7-
KOV
L6V
LK5
LLZTM
M0C
M0N
M2P
M41
M4Y
M7R
M7S
MA-
MK~
N2Q
NB0
NPVJJ
NQ-
NQJWS
NU0
O9-
O93
O9J
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PTHSS
Q2X
QOS
R89
R9I
RIG
RNS
ROL
RPZ
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TUC
TUS
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VOH
W23
W48
WK8
XPP
XU3
YLTOR
ZMTXR
~A9
AAPKM
AAYXX
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
CITATION
PHGZM
PHGZT
PQGLB
7SC
7TB
7U5
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c268t-f3f07a066a4a9bff4f6c843e3ad060adfef0708045e0208b11652187b15dc5833
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000755152200011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0965-5425
IngestDate Tue Oct 07 13:40:53 EDT 2025
Sat Nov 29 05:16:10 EST 2025
Fri Feb 21 02:47:41 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords coupled polarized electromagnetic waves
multiparameter nonlinear eigenvalue problem
Sturm–Liouville problem
fixed point of mapping
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c268t-f3f07a066a4a9bff4f6c843e3ad060adfef0708045e0208b11652187b15dc5833
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2628786295
PQPubID 60276
PageCount 7
ParticipantIDs proquest_journals_2628786295
crossref_primary_10_1134_S0965542522010110
springer_journals_10_1134_S0965542522010110
PublicationCentury 2000
PublicationDate 20220100
2022-01-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 1
  year: 2022
  text: 20220100
PublicationDecade 2020
PublicationPlace Moscow
PublicationPlace_xml – name: Moscow
PublicationTitle Computational mathematics and mathematical physics
PublicationTitleAbbrev Comput. Math. and Math. Phys
PublicationYear 2022
Publisher Pleiades Publishing
Springer Nature B.V
Publisher_xml – name: Pleiades Publishing
– name: Springer Nature B.V
References Vainberg (CR9) 1956
Vinokurov, Sadovnichii (CR13) 2003; 68
CR4
CR3
CR6
Angermann, Shestopalov, Smirnov, Yatsyk (CR7) 2018
Smirnov, Valovik (CR8) 2017; 294
CR5
CR18
CR17
CR16
CR15
Adams (CR21) 1975
Kupriyanova, Smirnov (CR2) 2004; 44
Atkinson, Mingarelli (CR11) 2011
CR20
Egorov, Kondrat’ev (CR12) 1996; 51
Ambrosetti, Rabinowitz (CR10) 1973; 14
Vladimirov (CR14) 2017; 208
Trenogin (CR22) 1993
Schurman, Smirnov, Shestopalov (CR1) 2005; 71
Kato (CR19) 1966
cr-split#-1612_CR17.1
cr-split#-1612_CR17.2
H. W. Schurman (1612_CR1) 2005; 71
M. M. Vainberg (1612_CR9) 1956
S. N. Kupriyanova (1612_CR2) 2004; 44
F. V. Atkinson (1612_CR11) 2011
T. Kato (1612_CR19) 1966
1612_CR20
Y. G. Smirnov (1612_CR8) 2017; 294
V. A. Vinokurov (1612_CR13) 2003; 68
1612_CR4
V. A. Trenogin (1612_CR22) 1993
1612_CR5
A. A. Vladimirov (1612_CR14) 2017; 208
1612_CR18
1612_CR6
L. Angermann (1612_CR7) 2018
1612_CR15
1612_CR16
Yu. V. Egorov (1612_CR12) 1996; 51
R. Adams (1612_CR21) 1975
1612_CR3
A. Ambrosetti (1612_CR10) 1973; 14
References_xml – volume: 208
  start-page: 1298
  year: 2017
  end-page: 1311
  ident: CR14
  article-title: Majorants for eigenvalues of Sturm–Liouville problems with potentials lying in balls of weighted spaces
  publication-title: Sb. Math.
  doi: 10.1070/SM8741
– ident: CR18
– year: 2011
  ident: CR11
– ident: CR3
– ident: CR4
– ident: CR15
– ident: CR16
– year: 1975
  ident: CR21
– ident: CR17
– volume: 14
  start-page: 349
  year: 1973
  end-page: 381
  ident: CR10
  article-title: Dual variational methods in critical point theory and applications
  publication-title: J. Funct. Anal.
  doi: 10.1016/0022-1236(73)90051-7
– volume: 294
  start-page: 146
  year: 2017
  end-page: 156
  ident: CR8
  article-title: Nonlinear coupled wave propagation in an -dimensional layer
  publication-title: Appl. Math. Comput.
– year: 1966
  ident: CR19
  doi: 10.1007/978-3-642-53393-8
– volume: 44
  start-page: 1762
  year: 2004
  end-page: 1772
  ident: CR2
  article-title: Propagation of electromagnetic waves in cylindrical dielectric waveguides filled with a nonlinear medium
  publication-title: Comput. Math. Math. Phys.
– ident: CR6
– year: 2018
  ident: CR7
– ident: CR5
– volume: 68
  start-page: 247
  year: 2003
  end-page: 252
  ident: CR13
  article-title: On the range of variation of an eigenvalue when the potential is varied
  publication-title: Dokl. Math.
– volume: 51
  start-page: 439
  year: 1996
  end-page: 508
  ident: CR12
  article-title: Estimates for the first eigenvalue in some Sturm–Liouville problems
  publication-title: Russ. Math. Surv.
  doi: 10.1070/RM1996v051n03ABEH002911
– year: 1993
  ident: CR22
– volume: 71
  start-page: 016614-1
  year: 2005
  end-page: 016614-10
  ident: CR1
  article-title: “Propagation of TE waves in cylindrical nonlinear dielectric waveguides,” Phys. Rev. E Stat
  publication-title: Nonlinear Soft Matter Phys.
– year: 1956
  ident: CR9
– ident: CR20
– volume: 14
  start-page: 349
  year: 1973
  ident: 1612_CR10
  publication-title: J. Funct. Anal.
  doi: 10.1016/0022-1236(73)90051-7
– volume: 208
  start-page: 1298
  year: 2017
  ident: 1612_CR14
  publication-title: Sb. Math.
  doi: 10.1070/SM8741
– volume: 294
  start-page: 146
  year: 2017
  ident: 1612_CR8
  publication-title: Appl. Math. Comput.
– ident: 1612_CR20
– volume-title: Sobolev Spaces
  year: 1975
  ident: 1612_CR21
– ident: 1612_CR5
  doi: 10.1063/1.4799276
– ident: 1612_CR18
  doi: 10.1007/978-3-0348-5485-6
– volume-title: Nonlinear and Inverse Problems in Electromagnetics
  year: 2018
  ident: 1612_CR7
– volume-title: Variational Methods for Analysis of Nonlinear Operators
  year: 1956
  ident: 1612_CR9
– volume: 68
  start-page: 247
  year: 2003
  ident: 1612_CR13
  publication-title: Dokl. Math.
– ident: 1612_CR4
  doi: 10.1063/1.4769885
– ident: 1612_CR16
– ident: 1612_CR6
  doi: 10.14760/OWP-2014-15
– volume-title: Functional Analysis
  year: 1993
  ident: 1612_CR22
– ident: #cr-split#-1612_CR17.1
– ident: 1612_CR15
  doi: 10.1080/09500340.2019.1695004
– volume: 44
  start-page: 1762
  year: 2004
  ident: 1612_CR2
  publication-title: Comput. Math. Math. Phys.
– ident: #cr-split#-1612_CR17.2
– ident: 1612_CR3
  doi: 10.1063/1.4817388
– volume-title: Perturbation Theory for Linear Operators
  year: 1966
  ident: 1612_CR19
  doi: 10.1007/978-3-642-53393-8
– volume: 71
  start-page: 016614-1
  year: 2005
  ident: 1612_CR1
  publication-title: Nonlinear Soft Matter Phys.
– volume-title: Multiparameter Eigenvalue Problems: Sturm–Liouville Theory
  year: 2011
  ident: 1612_CR11
– volume: 51
  start-page: 439
  year: 1996
  ident: 1612_CR12
  publication-title: Russ. Math. Surv.
  doi: 10.1070/RM1996v051n03ABEH002911
SSID ssj0016983
Score 2.2118237
Snippet For the study of nonlinear multiparameter eigenvalue problems, a method of Y -mappings, making it possible to prove the existence of solutions, is proposed....
For the study of nonlinear multiparameter eigenvalue problems, a method of Y-mappings, making it possible to prove the existence of solutions, is proposed. The...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 150
SubjectTerms Computational Mathematics and Numerical Analysis
Eigenvalues
Eigenvectors
Electromagnetic radiation
Existence theorems
Fixed points (mathematics)
Mathematics
Mathematics and Statistics
Nonlinearity
Partial Differential Equations
Wave propagation
Title Method of Y-Mappings for Study of Multiparameter Nonlinear Eigenvalue Problems
URI https://link.springer.com/article/10.1134/S0965542522010110
https://www.proquest.com/docview/2628786295
Volume 62
WOSCitedRecordID wos000755152200011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1555-6662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016983
  issn: 0965-5425
  databaseCode: RSV
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbQ4AAHBgPEYKAcOIEitjZ95IjQJg6smhhM41SlaYI4bEPrQOLfY_exidcBrk1qVa5Tf67tzwBn6LRUYh3NMfpRXKhQcamV5YGjjKe1Jwuy59FtEEXheCwHZR93VlW7VynJ_EtdzB0Rl0PiKfHQxBxK4HaorWodvV1I8xruhqNl6sCXBfcm7ua0vUxl_ijiszNaIcwvSdHc1_Tq_3rKHdguoSW7KmxhF9bMtAH1Emay8hBnDdjqL6lasz2I-vkMaTaz7JH3FdE1PGUMoSyjEsN3up436RJH-IRqZ1hUsGuoOesSlSfRhRs2KAbTZPvw0OveX9_wcsgC144fLrh1bTtQCDyUUDKxVlhfh8I1rkrbflul1uA6wkrhGZrnmRBdD8KCIOl4qaaWrQOoTWdTcwgstYkQqdHSFVbgrdJJMZoLEBEL5SbSa8J5pe34peDSiPMYxBXxN701oVW9j7g8Vlns-BjgYQxGsi4q_a-WfxV29Kfdx7DpUJND_qOlBbXF_NWcwIZ-Wzxn89Pc2j4A5o3MeQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbQQAIODAaIwYAcOIEitjZ95IjQpiHWamJjGqcqTRPEgQ2tA4l_T9zHJl4HuDapVblO_bm2PwOcGaclYm1JaqIfQZnwBeVSaOpZQjlSOjwnex71vDD0x2PeL_q407LavUxJZl_qfO4IuxwgT4ljTMzCBG4L26pWmXFYSJh_NxgtUgcuz7k3zW6K24tU5o8iPjujJcL8khTNfE2n-q-n3IatAlqSq9wWdmBFTWpQLWAmKQ5xWoPNYEHVmu5CGGQzpMlUkwcaCKRreEyJgbIESwzf8XrWpIsc4c9YO0PCnF1DzEgbqTyRLlyRfj6YJt2D-057eN2lxZAFKi3Xn1Nt66YnDPAQTPBYa6Zd6TNb2SJpuk2RaGXWDaxkjsJ5njHS9RhY4MUtJ5HYsrUPlcl0og6AJDpmLFGS20wzcyu3EhPNeQYRM2HH3KnDeant6CXn0oiyGMRm0Te91aFRvo-oOFZpZLkmwDMxGMq6KPW_XP5V2OGfdp_CencY9KLeTXh7BBsWNjxkP10aUJnPXtUxrMm3-VM6O8ks7wOGUM9d
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLbQQAgODAaIwYAcOIGibW36OiLYBGKrJg2mcarSNEEc2Ka1IPHvidt0E68D4tq4VpU48ufa_gxwpp0Wj5UlqI5-OGXc5zQQXFHP4tIRwgkKsudRzwtDfzwOBmbOaVpWu5cpyaKnAVmaJllzligzg4Q1h8hZ4mhzszCZ28YWq1WGdfQYrg9HizSCGxQ8nFqaorhJa_6o4rNjWqLNLwnS3O90q__-4m3YMpCTXBY2sgMrclKDqoGfxFzutAab_QWFa7oLYT-fLU2mijzSPkcah6eUaIhLsPTwHZ_nzbvIHf6CNTUkLFg3-Jx0kOITacQlGRQDa9I9eOh27q9uqBm-QIXl-hlVtmp5XAMSzngQK8WUK3xmS5snLbfFEyX1uoabzJE45zNGGh8NF7y47SQCW7n2oTKZTuQBkETFjCVSBDZTTL8aWImO8jyNlBm348Cpw3m589Gs4NiI8tjEZtG3fatDozybyFy3NLJcHfjp2Ax1XZRnsVz-Vdnhn6RPYX1w3Y16t-HdEWxY2AeR_4tpQCWbv8pjWBNv2XM6P8mN8ANni9hB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Method+of+Y-Mappings+for+Study+of+Multiparameter+Nonlinear+Eigenvalue+Problems&rft.jtitle=Computational+mathematics+and+mathematical+physics&rft.au=Smirnov%2C+Yu.+G.&rft.date=2022-01-01&rft.pub=Pleiades+Publishing&rft.issn=0965-5425&rft.eissn=1555-6662&rft.volume=62&rft.issue=1&rft.spage=150&rft.epage=156&rft_id=info:doi/10.1134%2FS0965542522010110&rft.externalDocID=10_1134_S0965542522010110
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0965-5425&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0965-5425&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0965-5425&client=summon