Exact Value of the Nonmonotone Complexity of Boolean Functions
We study the complexity of the realization of Boolean functions by circuits in infinite complete bases containing all monotone functions with zero weight (cost of use) and finitely many nonmonotone functions with unit weight. The complexity of the realization of Boolean functions in the case where t...
Uloženo v:
| Vydáno v: | Mathematical Notes Ročník 105; číslo 1-2; s. 28 - 35 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Moscow
Pleiades Publishing
01.01.2019
Springer Nature B.V |
| Témata: | |
| ISSN: | 0001-4346, 1067-9073, 1573-8876 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | We study the complexity of the realization of Boolean functions by circuits in infinite complete bases containing all monotone functions with zero weight (cost of use) and finitely many nonmonotone functions with unit weight. The complexity of the realization of Boolean functions in the case where the only nonmonotone element of the basis is negation was completely described by A. A. Markov: the minimum number of negations sufficient for the realization of an arbitrary Boolean function
f
(the inversion complexity of the function
f
) is equal to ⌈log
2
(
d
(
f
) + 1)⌉, where
d
(
f
) is the maximum (over all increasing chains of sets of values of the variables) number of changes of the function value from 1 to 0. In the present paper, this result is generalized to the case of the computation of Boolean functions over an arbitrary basis
B
of prescribed form. It is shown that the minimum number of nonmonotone functions sufficient for computing an arbitrary Boolean function
f
is equal to ⌈log
2
(
d
(
f
)/
D
(
B
) +1)⌉, where
D
(
B
) = max
d
(
ω
); the maximum is taken over all nonmonotone functions ω of the basis
B
. |
|---|---|
| AbstractList | We study the complexity of the realization of Boolean functions by circuits in infinite complete bases containing all monotone functions with zero weight (cost of use) and finitely many nonmonotone functions with unit weight. The complexity of the realization of Boolean functions in the case where the only nonmonotone element of the basis is negation was completely described by A. A. Markov: the minimum number of negations sufficient for the realization of an arbitrary Boolean function f (the inversion complexity of the function f) is equal to ⌈log2(d(f) + 1)⌉, where d(f) is the maximum (over all increasing chains of sets of values of the variables) number of changes of the function value from 1 to 0. In the present paper, this result is generalized to the case of the computation of Boolean functions over an arbitrary basis B of prescribed form. It is shown that the minimum number of nonmonotone functions sufficient for computing an arbitrary Boolean function f is equal to ⌈log2(d(f)/D(B) +1)⌉, where D(B) = max d(ω); the maximum is taken over all nonmonotone functions ω of the basis B. We study the complexity of the realization of Boolean functions by circuits in infinite complete bases containing all monotone functions with zero weight (cost of use) and finitely many nonmonotone functions with unit weight. The complexity of the realization of Boolean functions in the case where the only nonmonotone element of the basis is negation was completely described by A. A. Markov: the minimum number of negations sufficient for the realization of an arbitrary Boolean function f (the inversion complexity of the function f ) is equal to ⌈log 2 ( d ( f ) + 1)⌉, where d ( f ) is the maximum (over all increasing chains of sets of values of the variables) number of changes of the function value from 1 to 0. In the present paper, this result is generalized to the case of the computation of Boolean functions over an arbitrary basis B of prescribed form. It is shown that the minimum number of nonmonotone functions sufficient for computing an arbitrary Boolean function f is equal to ⌈log 2 ( d ( f )/ D ( B ) +1)⌉, where D ( B ) = max d ( ω ); the maximum is taken over all nonmonotone functions ω of the basis B . |
| Author | Kochergin, V. V. Mikhailovich, A. V. |
| Author_xml | – sequence: 1 givenname: V. V. surname: Kochergin fullname: Kochergin, V. V. email: vvkoch@yandex.ru organization: Lomonosov Moscow State University – sequence: 2 givenname: A. V. surname: Mikhailovich fullname: Mikhailovich, A. V. email: anna@mikhaylovich.com organization: National Research University Higher School of Economics |
| BookMark | eNp1UMtKAzEUDVLBWv0AdwOuR-9NMmlmI2hpVSi68LEd0jTRlmlSkwy0f2-GCi7E1eVynpxTMnDeGUIuEK4QGb9-AQDkjAusAQG4PCJDrMaslHIsBmTYw2WPn5DTGNf5Q4EwJDfTndKpeFdtZwpvi_RpiifvNt75lBOKid9sW7NbpX2P3nnfGuWKWed0WnkXz8ixVW005z93RN5m09fJQzl_vn-c3M5LTYVM5XJRU7pgSleSAddWMg6yXkrBqBa8YpapXG1hham04lRrkKY2mqFkS16jZSNyefDdBv_VmZiate-Cy5ENpSAlIq9pZuGBpYOPMRjbbMNqo8K-QWj6mZo_M2UNPWhi5roPE36d_xd9A3YzaXQ |
| Cites_doi | 10.4213/dm1394 10.1007/978-3-662-46494-6_3 10.1007/978-3-642-24508-4 |
| ContentType | Journal Article |
| Copyright | Pleiades Publishing, Ltd. 2019 Copyright Springer Nature B.V. 2019 |
| Copyright_xml | – notice: Pleiades Publishing, Ltd. 2019 – notice: Copyright Springer Nature B.V. 2019 |
| DBID | AAYXX CITATION |
| DOI | 10.1134/S0001434619010048 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1573-8876 |
| EndPage | 35 |
| ExternalDocumentID | 10_1134_S0001434619010048 |
| GroupedDBID | -EM -~C -~X .86 .VR 06D 0R~ 1SB 2J2 2JN 2JY 2KG 2KM 2LR 30V 4.4 408 409 40D 40E 5QI 5VS 642 67Z 6NX 8UJ 95- 95. 95~ 96X AABHQ ABTAH ACIWK AEFIE AEGNC AEXYK AFFNX AHYZX AIIXL AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN ARMRJ ASPBG AVWKF AZFZN B-. B0M BA0 CAG COF DL5 EAD EAP EBS EJD EMK EPL ESBYG ESX FNLPD FWDCC GGRSB GJIRD GQ6 GQ8 GXS HG6 HMJXF HQYDN HRMNR HZ~ H~9 IHE IXC IXD IXE IZIGR I~X I~Z JBSCW JCJTX KOV KOW LAK MA- N2Q NB0 NU0 O9- O93 O9G O9I O9J OVD P19 P9R PF0 PT5 QOK QOS RHV RNI RPX RSV RZC RZE RZK S16 S3B SAP SDD SDH SHX SMT SNE SNX SOJ TN5 TSG TSK TSV TUC TUS U2A UG4 VC2 W23 WK8 XU3 ZY4 ~A9 ~EX AAYXX ABFSG ACSTC AEZWR AFHIU AHWEU AIXLP CITATION |
| ID | FETCH-LOGICAL-c268t-db922b3ac58304cf834089d8632c6453f3a346bf6e5ca42cc08e9ec3183d491f3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000464727500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0001-4346 1067-9073 |
| IngestDate | Thu Sep 25 01:04:35 EDT 2025 Sat Nov 29 03:48:52 EST 2025 Fri Feb 21 02:38:59 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1-2 |
| Keywords | circuit complexity circuits of functional elements Boolean (logical) circuits inversion complexity nonmonotone complexity |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c268t-db922b3ac58304cf834089d8632c6453f3a346bf6e5ca42cc08e9ec3183d491f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2208811492 |
| PQPubID | 2043561 |
| PageCount | 8 |
| ParticipantIDs | proquest_journals_2208811492 crossref_primary_10_1134_S0001434619010048 springer_journals_10_1134_S0001434619010048 |
| PublicationCentury | 2000 |
| PublicationDate | 20190100 2019-1-00 20190101 |
| PublicationDateYYYYMMDD | 2019-01-01 |
| PublicationDate_xml | – month: 1 year: 2019 text: 20190100 |
| PublicationDecade | 2010 |
| PublicationPlace | Moscow |
| PublicationPlace_xml | – name: Moscow – name: New York |
| PublicationTitle | Mathematical Notes |
| PublicationTitleAbbrev | Math Notes |
| PublicationYear | 2019 |
| Publisher | Pleiades Publishing Springer Nature B.V |
| Publisher_xml | – name: Pleiades Publishing – name: Springer Nature B.V |
| References | Markov (CR1) 1957; 116 Nechiporuk (CR6) 1962 Fischer (CR7) 1975 Kochergin, Mikhailovich (CR12) 2015 Blais, Canonne, Oliveira, Servedio, Tan (CR10) 2015; 40 CR9 Guo, Malkin, Oliveira, Rosen (CR11) 2015; 9014 Kochergin, Mikhailovich (CR13) 2016; 28 Markov (CR4) 1963; 150 Savage (CR3) 1976 Kochergin, Mikhailovich (CR14) 2015 Morizumi (CR8) 2008 Kochergin, Mikhailovich (CR15) 2015; 4 Lupanov (CR2) 1984 Gilbert (CR5) 1960 J. E. Savage (1038_CR3) 1976 1038_CR9 S. Guo (1038_CR11) 2015; 9014 M. J. Fischer (1038_CR7) 1975 H. Morizumi (1038_CR8) 2008 V. V. Kochergin (1038_CR15) 2015; 4 V. V. Kochergin (1038_CR13) 2016; 28 O. B. Lupanov (1038_CR2) 1984 V. V. Kochergin (1038_CR12) 2015 É I. I. Nechiporuk (1038_CR6) 1962 A. A. Markov (1038_CR1) 1957; 116 A. A. Markov (1038_CR4) 1963; 150 E. N. Gilbert (1038_CR5) 1960 E. Blais (1038_CR10) 2015; 40 V. V. Kochergin (1038_CR14) 2015 |
| References_xml | – year: 1975 ident: CR7 article-title: The complexity of negation–limited networks–a brief survey publication-title: Automata Theory and Formal Languages, Lecture Notes in Comput. Sci. – volume: 150 start-page: 477 issue: 3 year: 1963 end-page: 479 ident: CR4 article-title: On inversion complexity of a system of Boolean functions publication-title: Dokl. Akad. Nauk SSSR – volume: 28 start-page: 80 issue: 4 year: 2016 end-page: 90 ident: CR13 article-title: The minimum number of negations in circuits for systems of multi–valued functions publication-title: Diskret. Mat. doi: 10.4213/dm1394 – year: 2015 ident: CR14 publication-title: Some Extensions of the Inversion Complexity of Boolean Function – volume: 9014 start-page: 36 year: 2015 end-page: 65 ident: CR11 article-title: The power of negations in cryptography publication-title: Theory of Cryptography. Part I, Lecture Notes in Comput. Sci. doi: 10.1007/978-3-662-46494-6_3 – volume: 40 start-page: 512 year: 2015 ident: CR10 article-title: Learning circuits with few negations publication-title: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, LIPIcs. Leibniz Int. Proc. Inform. – year: 1976 ident: CR3 publication-title: The Complexity of Computing – year: 1984 ident: CR2 publication-title: Asymptotic Estimates of Complexity of Control Systems – year: 1960 ident: CR5 article-title: Theoretical–structural properties of closing switching functions publication-title: Collection of Papers in Cybernetics – ident: CR9 – year: 1962 ident: CR6 article-title: On complexity of circuits in some bases containing nontrivial elements with zero weights publication-title: Problems of Cybernetics – volume: 4 start-page: 24 issue: 30 year: 2015 end-page: 31 ident: CR15 article-title: On the complexity of circuits in bases containing monotone elements with zero weights publication-title: Prikl. Diskret. Mat. – year: 2008 ident: CR8 publication-title: A Note on the Inversion Complexity of Boolean Functions in Boolean Formulas – year: 2015 ident: CR12 publication-title: Inversion Complexity of Functions of Multi–Valued Logic – volume: 116 start-page: 917 issue: 6 year: 1957 end-page: 919 ident: CR1 article-title: On inversion complexity of systems of functions publication-title: Dokl. Akad. Nauk SSSR – volume-title: Inversion Complexity of Functions of Multi–Valued Logic year: 2015 ident: 1038_CR12 – volume-title: Problems of Cybernetics year: 1962 ident: 1038_CR6 – volume: 116 start-page: 917 issue: 6 year: 1957 ident: 1038_CR1 publication-title: Dokl. Akad. Nauk SSSR – ident: 1038_CR9 doi: 10.1007/978-3-642-24508-4 – volume: 40 start-page: 512 year: 2015 ident: 1038_CR10 publication-title: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, LIPIcs. Leibniz Int. Proc. Inform. – volume-title: Some Extensions of the Inversion Complexity of Boolean Function year: 2015 ident: 1038_CR14 – volume-title: The Complexity of Computing year: 1976 ident: 1038_CR3 – volume: 4 start-page: 24 issue: 30 year: 2015 ident: 1038_CR15 publication-title: Prikl. Diskret. Mat. – volume: 150 start-page: 477 issue: 3 year: 1963 ident: 1038_CR4 publication-title: Dokl. Akad. Nauk SSSR – volume-title: Asymptotic Estimates of Complexity of Control Systems year: 1984 ident: 1038_CR2 – volume-title: A Note on the Inversion Complexity of Boolean Functions in Boolean Formulas year: 2008 ident: 1038_CR8 – volume: 28 start-page: 80 issue: 4 year: 2016 ident: 1038_CR13 publication-title: Diskret. Mat. doi: 10.4213/dm1394 – volume-title: Automata Theory and Formal Languages, Lecture Notes in Comput. Sci. year: 1975 ident: 1038_CR7 – volume-title: Collection of Papers in Cybernetics year: 1960 ident: 1038_CR5 – volume: 9014 start-page: 36 year: 2015 ident: 1038_CR11 publication-title: Theory of Cryptography. Part I, Lecture Notes in Comput. Sci. doi: 10.1007/978-3-662-46494-6_3 |
| SSID | ssj0011610 ssj0039783 |
| Score | 2.1201532 |
| Snippet | We study the complexity of the realization of Boolean functions by circuits in infinite complete bases containing all monotone functions with zero weight (cost... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 28 |
| SubjectTerms | Boolean algebra Boolean functions Codes Complexity Markov processes Mathematics Mathematics and Statistics Monotone functions Weight |
| Title | Exact Value of the Nonmonotone Complexity of Boolean Functions |
| URI | https://link.springer.com/article/10.1134/S0001434619010048 https://www.proquest.com/docview/2208811492 |
| Volume | 105 |
| WOSCitedRecordID | wos000464727500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLink Contemporary customDbUrl: eissn: 1573-8876 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0039783 issn: 0001-4346 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB509aAH3-LqKjl4UgptknaTi6CyiwddxMfiraRpAsKylW1X9N876WMXXwc9lrRpmMzjm5lkBuA4kZFRQWI8n6a-xxOOIsW19XDrA9E1oaFl6GJ43R0MxNOTvK3vcefNafcmJVlq6qrvCHd3el0tOh45E-YYbxGW0NoJ16_h7n44Sx0EJSCoHpgLbFQAGD0l_LbOa_4432fLNIebXzKkpeHpr_9ryRuwVuNMcl4xxiYsmPEWrN7MirTm23DWe1O6IEM1mhqSWYJDZJCNkS8zV6GbOFXhymUW7270IstGRo1JHw1hyas78NjvPVxeeXU7BU_TSBRemkhKE6Z0KJiP-yEY94VMRcSojnjILFO41MRGJtSKU619YaTRTuhTLgPLdqE1xt_vAaFWoMLmvnXVBf1Aq8DIyHImEoS_jKdtOGlIGb9UVTPi0ttgPP5GlDZ0GmLHtQDlMaWo_tBXk7QNpw1x58O_Trb_p7cPYAUBkKxCKh1oFZOpOYRl_Vo855Ojkq8-AC34wf4 |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH_oFNSD3-J0ag-elEKbpF1yEVQ2FLciOsduJU0TEEYrayf635v0Y8Ovgx7La9Pw8r5f8gvAacR8yd1I2g6KHZtERKsUEcrWS-_StvQkKkoXw147COhoxO6rc9xZvdu9bkkWlrq8d4SYM70Gi474xoUZwVuEJaIdlgHMf3gczloHbhEQlA_YFDbKAFhnSvrbqq_543ifPdM83PzSIS0cT3fjX1PehPUqzrQuS8HYggWZbMNafwbSmu3AReeNi9wa8vFUWqmyNMkK0kTLZWoQui1jKgxcZv5uqFdpOpY8sbraERayugtP3c7g-saurlOwBfJpbscRQyjCXHgUO3o9KCYOZTH1MRI-8bDCXE81Ur70BCdICIdKJoVR-pgwV-E9aCT69_tgIUW1wSaOMuiCjiu4K5mvCKaRDn8xiZtwVrMyfClRM8Ii28Ak_MaUJrRqZoeVAmUhQtr86VyNoSac18ydk38d7OBPb5_Ays2g3wt7t8HdIazqYIiV5ZUWNPLJVB7BsnjNn7PJcSFjH1AkxOI |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oFNEH7-J0ah58UoptknbJi-CtKM4xUMfeSpsmIIx2rJ3ovzfpZcPbg_hYTpuGk5NzTb4DcBxxT4ZOJC0bx7ZFI6q3FBXK0kvvsLZ0JS5SF_1Ou9tlgwHvVX1Os_q0e12SLO80GJSmJD8bxarqQULN_V6DS0c9Y86MEM7DAjXn6E24_tiflhGcwjkoH4hJcpTOsI6a9LdVjfPH8T5bqZnr-aVaWhghf-3f01-H1cr_RBelwGzAnEw2YeVhCt6abcH5zVsoctQPhxOJUoU0CXXTRMtrapC7kVEhBkYzfzfUyzQdyjBBvjaQhQxvw7N_83R1a1VtFiyBPZZbccQxjkgoXEZsvU6MUJvxmHkEC4-6RJFQTzVSnnRFSLEQNpNcCqMMYsodRXagkejf7wLCimlFTm1lUAdtR4SO5J6ihEXaLSY0bsJJzdZgVKJpBEUUQmjwjSlNaNWMD6qNlQUYa7WoYziOm3BaM3pG_nWwvT-9fQRLvWs_6Nx17_dhWftIvMy6tKCRjyfyABbFa_6SjQ8LcfsAQ_LNxg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exact+Value+of+the+Nonmonotone+Complexity+of+Boolean+Functions&rft.jtitle=Mathematical+Notes&rft.au=Kochergin%2C+V.+V.&rft.au=Mikhailovich%2C+A.+V.&rft.date=2019-01-01&rft.issn=0001-4346&rft.eissn=1573-8876&rft.volume=105&rft.issue=1-2&rft.spage=28&rft.epage=35&rft_id=info:doi/10.1134%2FS0001434619010048&rft.externalDBID=n%2Fa&rft.externalDocID=10_1134_S0001434619010048 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4346&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4346&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4346&client=summon |