A GPU-based elastic shape registration approach in implicit spaces
In this paper, we present a GPU-based implementation of an elastic shape registration approach in implicit spaces. Shapes are represented using signed distance functions, while deformations are modeled by cubic B-splines. In a variational framework, an incremental free form deformation strategy is a...
Uložené v:
| Vydané v: | Journal of real-time image processing Ročník 16; číslo 6; s. 2059 - 2071 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2019
Springer Nature B.V |
| Predmet: | |
| ISSN: | 1861-8200, 1861-8219 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | In this paper, we present a GPU-based implementation of an elastic shape registration approach in implicit spaces. Shapes are represented using signed distance functions, while deformations are modeled by cubic B-splines. In a variational framework, an incremental free form deformation strategy is adopted to handle smooth deformations through an adaptive size control lattice grid. The grid control points are estimated by a closed-form solution which avoids the gradient descent iterations. However, even this solution is very far from real time. We show in detail that such an algorithm is computationally expensive with a time complexity of
O
(
N
C
P
x
N
C
P
2
X
2
Y
2
)
where
N
C
P
x
and
NCP
are the grid lattice resolution parameters in the shape domain of size
X
×
Y
. Moreover, the problem becomes more time-consuming with the increase in the number of control points because this requires the execution of the incremental algorithm several times. The closed-form solution was implemented using eight different GPU techniques. Our experimental results demonstrate speedups of more than
150
×
compared to the
C
implementation on a CPU. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1861-8200 1861-8219 |
| DOI: | 10.1007/s11554-017-0710-7 |