Optimal Number of Topics in Topic Modeling Using Deep Auto Encoder Graph Regularized Non-Negative Matrix Factorization Algorithm

Topic modeling stands as a well-explored and foundational challenge in the text mining domain. Traditional topic schemes based on word co-occurrences, aim to expose the latent semantic structure embedded in a document corpus. Nevertheless, the inherent brevity of short texts introduces data sparsity...

Full description

Saved in:
Bibliographic Details
Published in:Journal of systems science and systems engineering Vol. 34; no. 3; pp. 257 - 283
Main Authors: Kherwa, Pooja, Arora, Jyoti
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2025
Springer Nature B.V
Subjects:
ISSN:1004-3756, 1861-9576
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Topic modeling stands as a well-explored and foundational challenge in the text mining domain. Traditional topic schemes based on word co-occurrences, aim to expose the latent semantic structure embedded in a document corpus. Nevertheless, the inherent brevity of short texts introduces data sparsity, hindering the effectiveness of conventional topic models and yielding suboptimal outcomes for such text. Typically, short texts encompass a restricted number of topics, necessitating a grasp of relevant background knowledge for a comprehensive understanding of semantic content. Motivated by the observed information, this research introduces a novel Deep Auto encoder Graph Regularized Non-negative Matrix Factorization algorithm (DAGR-NMF) to uncover significant and meaningful topics within short document contents. The three main phases of proposed work are preprocessing, feature extraction and topic modeling. Initially, the data are preprocessed using natural language preprocessing tasks such as stop word removal, stemming and lemmatizing. Then, feature extraction is performed using hybrid Absolute Deviation Factors-Class Term Frequency (ADF-CTF) to capture the most relevant information from the text. Finally, topic modeling task is executed using proposed DAGR-NMF approach. Experimental findings demonstrate that the introduced DAGR-NMF model outperforms all other techniques by achieving NMI values of 0.852, 0.857, 0.793, and 0.831 on associated press, political blog datasets, 20NewsGroups, and News category dataset, respectively.
AbstractList Topic modeling stands as a well-explored and foundational challenge in the text mining domain. Traditional topic schemes based on word co-occurrences, aim to expose the latent semantic structure embedded in a document corpus. Nevertheless, the inherent brevity of short texts introduces data sparsity, hindering the effectiveness of conventional topic models and yielding suboptimal outcomes for such text. Typically, short texts encompass a restricted number of topics, necessitating a grasp of relevant background knowledge for a comprehensive understanding of semantic content. Motivated by the observed information, this research introduces a novel Deep Auto encoder Graph Regularized Non-negative Matrix Factorization algorithm (DAGR-NMF) to uncover significant and meaningful topics within short document contents. The three main phases of proposed work are preprocessing, feature extraction and topic modeling. Initially, the data are preprocessed using natural language preprocessing tasks such as stop word removal, stemming and lemmatizing. Then, feature extraction is performed using hybrid Absolute Deviation Factors-Class Term Frequency (ADF-CTF) to capture the most relevant information from the text. Finally, topic modeling task is executed using proposed DAGR-NMF approach. Experimental findings demonstrate that the introduced DAGR-NMF model outperforms all other techniques by achieving NMI values of 0.852, 0.857, 0.793, and 0.831 on associated press, political blog datasets, 20NewsGroups, and News category dataset, respectively.
Author Kherwa, Pooja
Arora, Jyoti
Author_xml – sequence: 1
  givenname: Pooja
  surname: Kherwa
  fullname: Kherwa, Pooja
  email: poojakherwaap@gmail.com
  organization: Maharaja Surajmal Institute of Technology
– sequence: 2
  givenname: Jyoti
  surname: Arora
  fullname: Arora, Jyoti
  organization: Maharaja Surajmal Institute of Technology
BookMark eNp1kMtKxDAUhoMoeH0AdwHX0VzaNFkO3kFHEF2HpHNaK52kJq2oKx_dDBVcuTnX_z8Hvn207YMHhI4ZPWWUVmeJsZIpQnlBSik0EVtojynJiC4ruZ1rSgsiqlLuov2UXikVUjO6h74fhrFb2x4vp7WDiEODn8LQ1Ql3fq7wfVhB3_kWP6dNvAAY8GIaA770dV5FfB3t8IIfoZ16G7svWOFl8GQJrR27d8D3dozdB76y9RjyOg-Dx4u-zc34sj5EO43tExz95gP0fHX5dH5D7h6ub88Xd6TmUo1Ec8f5yikJWtWKl6IutQPqqqqwTjWMg6LAVhwaYbUUVDbWcqeEc1QDCCUO0Ml8d4jhbYI0mtcwRZ9fGsGZ0kWhZJFVbFbVMaQUoTFDzHjip2HUbECbGbTJoM0GtBHZw2dPylrfQvy7_L_pB_MPg6M
Cites_doi 10.1007/s41870-022-00890-4
10.1007/s11042-023-14352-x
10.1109/ACCESS.2024.3351709
10.1016/j.eswa.2020.114231
10.1016/j.neunet.2024.106360
10.1016/j.eswa.2023.122799
10.1016/j.ipm.2019.04.002
10.1016/j.chaos.2024.114633
10.1007/s00354-023-00230-5
10.1007/s11280-022-01034-1
10.1016/j.ins.2022.05.098
10.1007/s41870-023-01268-w
10.1007/s11042-020-09549-3
10.1016/j.ipm.2022.103251
10.1007/s12065-019-00300-y
10.1109/ACCESS.2023.3269660
10.1016/j.knosys.2021.107236
10.1007/s13278-022-00898-5
10.1080/02664763.2021.1919063
10.3390/math12101554
10.1007/s10639-023-11817-2
10.1016/j.neucom.2022.10.002
10.3389/fsoc.2022.886498
10.1109/ACCESS.2022.3211396
10.1016/j.sigpro.2023.109341
10.1016/j.patrec.2023.06.007
10.2196/19118
10.1016/j.patcog.2023.110037
10.18653/v1/2022.emnlp-main.176
10.1109/TEM.2022.3232178
ContentType Journal Article
Copyright Systems Engineering Society of China and Springer-Verlag GmbH Germany 2025
Copyright Springer Nature B.V. Jun 2025
Copyright_xml – notice: Systems Engineering Society of China and Springer-Verlag GmbH Germany 2025
– notice: Copyright Springer Nature B.V. Jun 2025
DBID AAYXX
CITATION
DOI 10.1007/s11518-024-5639-3
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1861-9576
EndPage 283
ExternalDocumentID 10_1007_s11518_024_5639_3
GroupedDBID -SA
-S~
-Y2
.86
.VR
06D
0R~
0VY
1N0
29L
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
40D
40E
5GY
5VR
5VS
5XA
5XB
6NX
8TC
92E
92I
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABDBE
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMFV
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFUIB
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ATHPR
AXYYD
AYFIA
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CAJEA
CCEZO
CCPQU
CCVFK
CHBEP
COF
CQIGP
CS3
CSCUP
CW9
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FA0
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
H13
HCIFZ
HF~
HG6
HLICF
HMJXF
HRMNR
HVGLF
HZ~
H~9
IHE
IJ-
IKXTQ
IWAJR
IXD
I~X
I~Z
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
M7S
MA-
N2Q
NPVJJ
NQJWS
NU0
O9-
O9J
P2P
P9P
PF0
PHGZM
PHGZT
PT4
PTHSS
Q--
QOS
R89
R9I
REI
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCL
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TCJ
TGP
TSG
TUC
U1G
U2A
U5K
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
ZMTXR
~A9
AAYXX
ABRTQ
AFFHD
CITATION
PQGLB
ID FETCH-LOGICAL-c268t-92b22db86e98c8253c59be0b774ab8f12e80e1d2ef3a96306faa2b83bb09ee383
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001404910800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1004-3756
IngestDate Wed Nov 05 08:34:52 EST 2025
Sat Nov 29 07:49:06 EST 2025
Tue Jun 17 01:10:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Topic modeling
purity and topic coherence
natural language processing
non-negative matrix factorization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c268t-92b22db86e98c8253c59be0b774ab8f12e80e1d2ef3a96306faa2b83bb09ee383
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3218944864
PQPubID 2044147
PageCount 27
ParticipantIDs proquest_journals_3218944864
crossref_primary_10_1007_s11518_024_5639_3
springer_journals_10_1007_s11518_024_5639_3
PublicationCentury 2000
PublicationDate 20250600
2025-06-00
20250601
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 6
  year: 2025
  text: 20250600
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Journal of systems science and systems engineering
PublicationTitleAbbrev J. Syst. Sci. Syst. Eng
PublicationYear 2025
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References X Bai (5639_CR4) 2024; 176
M Ortiz-Bouza (5639_CR24) 2024; 12
K Rajendra Prasad (5639_CR27) 2021; 14
J Feng (5639_CR8) 2022; 607
R Misra (5639_CR20) 2022
R V E Quille (5639_CR26) 2023; 11
V Jannesari (5639_CR15) 2024; 242
Q Wang (5639_CR34) 2022; 35
A Zadgaonkar (5639_CR37) 2024; 42
D K Harman (5639_CR14) 1993
L George (5639_CR12) 2023; 15
A O Ojo (5639_CR23) 2024; 146
M Grootendorst (5639_CR13) 2022
B Ozyurt (5639_CR25) 2021; 168
Q Liu (5639_CR18) 2020; 22
W Zhang (5639_CR38) 2024; 12
O Ugochi (5639_CR32) 2022; 14
M Gao (5639_CR10) 2019
S Athukorala (5639_CR3) 2022; 12
A Y Muaad (5639_CR21) 2021; 2
B Amiri (5639_CR2) 2024; 181
Q Fu (5639_CR9) 2021
B Smail (5639_CR30) 2023; 28
L A Adamic (5639_CR1) 2005
L Jin (5639_CR16) 2023; 60
J Wang (5639_CR33) 2023; 515
X Wu (5639_CR35) 2022
S A Curiskis (5639_CR5) 2020; 57
Y Liu (5639_CR19) 2023; 71
B A H Murshed (5639_CR22) 2022; 10
M Yang (5639_CR36) 2021; 227
Y Dong (5639_CR6) 2024; 217
S Kinariwala (5639_CR17) 2023; 82
J Rashid (5639_CR29) 2023; 172
W Gao (5639_CR11) 2023; 26
R Egger (5639_CR7) 2022; 7
A Thielmann (5639_CR31) 2023; 50
R Rani (5639_CR28) 2021; 80
References_xml – volume: 14
  start-page: 2005
  issue: 4
  year: 2022
  ident: 5639_CR32
  publication-title: International Journal of Information Technology
  doi: 10.1007/s41870-022-00890-4
– volume: 82
  start-page: 26411
  issue: 17
  year: 2023
  ident: 5639_CR17
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-023-14352-x
– volume: 12
  start-page: 6423
  year: 2024
  ident: 5639_CR24
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3351709
– volume: 168
  start-page: 114231
  year: 2021
  ident: 5639_CR25
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2020.114231
– volume: 176
  start-page: 106360
  year: 2024
  ident: 5639_CR4
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2024.106360
– volume: 242
  start-page: 122799
  year: 2024
  ident: 5639_CR15
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2023.122799
– volume: 57
  start-page: 102034
  issue: 2
  year: 2020
  ident: 5639_CR5
  publication-title: Information Processing & Management
  doi: 10.1016/j.ipm.2019.04.002
– volume: 181
  start-page: 114633
  year: 2024
  ident: 5639_CR2
  publication-title: Chaos, Solitons & Fractals
  doi: 10.1016/j.chaos.2024.114633
– volume: 42
  start-page: 109
  issue: 1
  year: 2024
  ident: 5639_CR37
  publication-title: New Generation Computing
  doi: 10.1007/s00354-023-00230-5
– volume: 26
  start-page: 55
  issue: 1
  year: 2023
  ident: 5639_CR11
  publication-title: World Wide Web
  doi: 10.1007/s11280-022-01034-1
– volume: 2
  start-page: 15
  year: 2021
  ident: 5639_CR21
  publication-title: Computer Sciences & Mathematics Forum
– volume: 607
  start-page: 79
  year: 2022
  ident: 5639_CR8
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2022.05.098
– volume-title: News category dataset
  year: 2022
  ident: 5639_CR20
– volume: 15
  start-page: 2187
  issue: 4
  year: 2023
  ident: 5639_CR12
  publication-title: International Journal of Information Technology
  doi: 10.1007/s41870-023-01268-w
– volume: 80
  start-page: 3275
  year: 2021
  ident: 5639_CR28
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-020-09549-3
– volume: 60
  start-page: 103251
  issue: 3
  year: 2023
  ident: 5639_CR16
  publication-title: Information Processing & Management
  doi: 10.1016/j.ipm.2022.103251
– volume: 14
  start-page: 545
  issue: 2
  year: 2021
  ident: 5639_CR27
  publication-title: Evolutionary Intelligence
  doi: 10.1007/s12065-019-00300-y
– volume: 11
  start-page: 41535
  year: 2023
  ident: 5639_CR26
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3269660
– volume-title: Bertopic: Neural topic modeling with a class-based TF-IDF procedure
  year: 2022
  ident: 5639_CR13
– volume: 227
  start-page: 107236
  year: 2021
  ident: 5639_CR36
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2021.107236
– volume-title: Proceedings of the 3rd International Workshop on Link Discovery (LinkKDD’ 05)
  year: 2005
  ident: 5639_CR1
– volume: 12
  start-page: 89
  issue: 1
  year: 2022
  ident: 5639_CR3
  publication-title: Social Network Analysis and Mining
  doi: 10.1007/s13278-022-00898-5
– volume: 35
  start-page: 5269
  issue: 5
  year: 2022
  ident: 5639_CR34
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 50
  start-page: 574
  issue: 3
  year: 2023
  ident: 5639_CR31
  publication-title: Journal of Applied Statistics
  doi: 10.1080/02664763.2021.1919063
– volume: 12
  start-page: 1554
  issue: 10
  year: 2024
  ident: 5639_CR38
  publication-title: Mathematics
  doi: 10.3390/math12101554
– volume-title: The first text retrieval conference (TREC-1)
  year: 1993
  ident: 5639_CR14
– volume-title: 2019 IEEE 8th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)
  year: 2019
  ident: 5639_CR10
– volume: 28
  start-page: 15657
  issue: 12
  year: 2023
  ident: 5639_CR30
  publication-title: Education and Information Technologies
  doi: 10.1007/s10639-023-11817-2
– volume: 515
  start-page: 157
  year: 2023
  ident: 5639_CR33
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.10.002
– volume: 7
  start-page: 886498
  year: 2022
  ident: 5639_CR7
  publication-title: Frontiers in Sociology
  doi: 10.3389/fsoc.2022.886498
– volume: 10
  start-page: 105328
  year: 2022
  ident: 5639_CR22
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3211396
– volume-title: Agreeing to disagree: Choosing among eight topic-modeling methods
  year: 2021
  ident: 5639_CR9
– volume: 217
  start-page: 109341
  year: 2024
  ident: 5639_CR6
  publication-title: Signal Processing
  doi: 10.1016/j.sigpro.2023.109341
– volume: 172
  start-page: 158
  year: 2023
  ident: 5639_CR29
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2023.06.007
– volume: 22
  start-page: e19118
  issue: 4
  year: 2020
  ident: 5639_CR18
  publication-title: Journal of Medical Internet Research
  doi: 10.2196/19118
– volume: 146
  start-page: 110037
  year: 2024
  ident: 5639_CR23
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2023.110037
– volume-title: Mitigating data sparsity for short text topic modeling by topic-semantic contrastive learning
  year: 2022
  ident: 5639_CR35
  doi: 10.18653/v1/2022.emnlp-main.176
– volume: 71
  start-page: 12593
  year: 2023
  ident: 5639_CR19
  publication-title: IEEE Transactions on Engineering Management
  doi: 10.1109/TEM.2022.3232178
SSID ssj0036910
Score 2.33589
Snippet Topic modeling stands as a well-explored and foundational challenge in the text mining domain. Traditional topic schemes based on word co-occurrences, aim to...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 257
SubjectTerms Algorithms
Coders
Complexity
Data mining
Datasets
Documents
Economic Theory/Quantitative Economics/Mathematical Methods
Engineering
Factorization
Feature extraction
Modelling
Natural language processing
Operations Research/Decision Theory
Preprocessing
Semantics
Texts
Words (language)
Title Optimal Number of Topics in Topic Modeling Using Deep Auto Encoder Graph Regularized Non-Negative Matrix Factorization Algorithm
URI https://link.springer.com/article/10.1007/s11518-024-5639-3
https://www.proquest.com/docview/3218944864
Volume 34
WOSCitedRecordID wos001404910800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1861-9576
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0036910
  issn: 1004-3756
  databaseCode: RSV
  dateStart: 20030301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6-DnrwLa4vcvCkBNqk2ybHRV09aBVfeCtNO9EFbZfdKuLJn-4k27IqetBbS0MomSTffJnMN4TsZm3EIECainASsoD7ginwkapoZaIozGUOTjL_NIpjeXenLuo87mFz270JSbqdepzshuAkGWIKayOsMjFJpttWbMZS9KvbZvsVoaolCOyRf9QOm1DmT118BaOxh_ktKOqwprvwr79cJPO1a0k7o7mwRCagWCZznwQHV8j7Oe4QT9godoVAaGnoddnvZUPaK0ZP1BZHsynq1F0moIcAfdp5rkp6VNj09wE9thLX9NLVsB_03iCncVmwGO6dhDg9s5r_r7Tr6vjUSZ6083iPL9XD0yq56R5dH5ywugYDy3goK6a45jzXMgQlM2STAo2rwdPoNaZaGp-D9MDPORiR4lr2QpOmXEuhtacAkP6ukamiLGCdUBOAjgzgos-CIOUyNRkI5RvNNXIW4bXIXmOMpD-S2kjGosp2WBMc1sQOayJaZKsxV1KvumEi0F9RyDfDoEX2G_OMP__a2cafWm-SWW6LALujmC0yVQ2eYZvMZC9VbzjYcZPxAx3H2hU
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB1BQaIc2gKt2H6AD5xAlhI7m9jHVdttq27TqiyotyhOxmUlmqx2U4R66k_v2JtoAZUD3BLFsiKP7TfP43kD8KHoEwYh0VSCk5hHIpRcY0hUxWibJHGpSvSS-aMkTdXVlb5o87jn3W33LiTpd-plshuBk-KEKbxPsMrlU3gWuSo7jqJ__tptvzLWrQSBO_JP-nEXynysi9_BaOlh_hEU9VgzXP-vv9yAtda1ZIPFXHgFT7B6DS9_ERx8A_fntEPcUKPUFwJhtWXjejop5mxSLZ6YK47mUtSZv0zADhCnbHDb1OywcunvM3bkJK7Zpa9hP5vcYcnSuuIpXnsJcXbmNP9_sqGv49MmebLB92t6ab7dbMKX4eF4_5i3NRh4IWLVcC2MEKVRMWpVEJuUZFyDgSGvMTfKhgJVgGEp0Mqc1nIQ2zwXRkljAo1I9HcLVqq6wrfAbIQmsUiLvoiiXKjcFih1aI0wxFlk0IOPnTGy6UJqI1uKKrthzWhYMzesmezBbmeurF1180ySv6KJb8ZRDz515ll-_mtn2__U-j28OB6fjbLRSXq6A6vCFQT2xzK7sNLMbnEPnhc_msl89s5PzAdfwNz5
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB1BqVA5AP1SlxbwoSeQ1cTOJvZx1e0CooSqLVVvUZyM25XaZLWbRYgTP52xN9FC1R4Qt0SxrMhje-Z5PO8B7Bd98kFIMJXcScwjEUquMSSoYrRNkrhUJXrK_OMkTdXlpT5pdU5n3W33LiW5qGlwLE1VczAp7cGy8I0cleLkX3ifXCyXj-FJREDG3ek6PbvotmIZ65aOwB3_J_24S2ve18XfjmkZbd5JkHq_M3rx33_8Ep63IScbLObIOjzCagOe_UFEuAm_vtLOcUuNUi8QwmrLzuvJuJixcbV4Yk40zZWuM3_JgA0RJ2wwb2p2VLmy-Cn74Kiv2anXtp-Of2LJ0rriKV55anH2xWkB_GAjr-_TFn-ywc0VvTTXt1vwbXR0fviRt9oMvBCxargWRojSqBi1KghlSjK6wcBQNJkbZUOBKsCwFGhlTms8iG2eC6OkMYFGJFi8DStVXeEOMBuhSSzSZlBEUS5UbguUOrRGGMIyMujBu84w2WRBwZEtyZbdsGY0rJkb1kz2YK8zXdauxlkmKY7RhEPjqAfvO1MtPz_Y2at_av0Wnp4MR9nxp_TzLqwJpxPsT2v2YKWZzvE1rBbfm_Fs-sbP0d809uXd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+Number+of+Topics+in+Topic+Modeling+Using+Deep+Auto+Encoder+Graph+Regularized+Non-Negative+Matrix+Factorization+Algorithm&rft.jtitle=Journal+of+systems+science+and+systems+engineering&rft.date=2025-06-01&rft.pub=Springer+Nature+B.V&rft.issn=1004-3756&rft.eissn=1861-9576&rft.volume=34&rft.issue=3&rft.spage=257&rft.epage=283&rft_id=info:doi/10.1007%2Fs11518-024-5639-3&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1004-3756&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1004-3756&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1004-3756&client=summon