Optimal Number of Topics in Topic Modeling Using Deep Auto Encoder Graph Regularized Non-Negative Matrix Factorization Algorithm
Topic modeling stands as a well-explored and foundational challenge in the text mining domain. Traditional topic schemes based on word co-occurrences, aim to expose the latent semantic structure embedded in a document corpus. Nevertheless, the inherent brevity of short texts introduces data sparsity...
Saved in:
| Published in: | Journal of systems science and systems engineering Vol. 34; no. 3; pp. 257 - 283 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.06.2025
Springer Nature B.V |
| Subjects: | |
| ISSN: | 1004-3756, 1861-9576 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Topic modeling stands as a well-explored and foundational challenge in the text mining domain. Traditional topic schemes based on word co-occurrences, aim to expose the latent semantic structure embedded in a document corpus. Nevertheless, the inherent brevity of short texts introduces data sparsity, hindering the effectiveness of conventional topic models and yielding suboptimal outcomes for such text. Typically, short texts encompass a restricted number of topics, necessitating a grasp of relevant background knowledge for a comprehensive understanding of semantic content. Motivated by the observed information, this research introduces a novel Deep Auto encoder Graph Regularized Non-negative Matrix Factorization algorithm (DAGR-NMF) to uncover significant and meaningful topics within short document contents. The three main phases of proposed work are preprocessing, feature extraction and topic modeling. Initially, the data are preprocessed using natural language preprocessing tasks such as stop word removal, stemming and lemmatizing. Then, feature extraction is performed using hybrid Absolute Deviation Factors-Class Term Frequency (ADF-CTF) to capture the most relevant information from the text. Finally, topic modeling task is executed using proposed DAGR-NMF approach. Experimental findings demonstrate that the introduced DAGR-NMF model outperforms all other techniques by achieving NMI values of 0.852, 0.857, 0.793, and 0.831 on associated press, political blog datasets, 20NewsGroups, and News category dataset, respectively. |
|---|---|
| AbstractList | Topic modeling stands as a well-explored and foundational challenge in the text mining domain. Traditional topic schemes based on word co-occurrences, aim to expose the latent semantic structure embedded in a document corpus. Nevertheless, the inherent brevity of short texts introduces data sparsity, hindering the effectiveness of conventional topic models and yielding suboptimal outcomes for such text. Typically, short texts encompass a restricted number of topics, necessitating a grasp of relevant background knowledge for a comprehensive understanding of semantic content. Motivated by the observed information, this research introduces a novel Deep Auto encoder Graph Regularized Non-negative Matrix Factorization algorithm (DAGR-NMF) to uncover significant and meaningful topics within short document contents. The three main phases of proposed work are preprocessing, feature extraction and topic modeling. Initially, the data are preprocessed using natural language preprocessing tasks such as stop word removal, stemming and lemmatizing. Then, feature extraction is performed using hybrid Absolute Deviation Factors-Class Term Frequency (ADF-CTF) to capture the most relevant information from the text. Finally, topic modeling task is executed using proposed DAGR-NMF approach. Experimental findings demonstrate that the introduced DAGR-NMF model outperforms all other techniques by achieving NMI values of 0.852, 0.857, 0.793, and 0.831 on associated press, political blog datasets, 20NewsGroups, and News category dataset, respectively. |
| Author | Kherwa, Pooja Arora, Jyoti |
| Author_xml | – sequence: 1 givenname: Pooja surname: Kherwa fullname: Kherwa, Pooja email: poojakherwaap@gmail.com organization: Maharaja Surajmal Institute of Technology – sequence: 2 givenname: Jyoti surname: Arora fullname: Arora, Jyoti organization: Maharaja Surajmal Institute of Technology |
| BookMark | eNp1kMtKxDAUhoMoeH0AdwHX0VzaNFkO3kFHEF2HpHNaK52kJq2oKx_dDBVcuTnX_z8Hvn207YMHhI4ZPWWUVmeJsZIpQnlBSik0EVtojynJiC4ruZ1rSgsiqlLuov2UXikVUjO6h74fhrFb2x4vp7WDiEODn8LQ1Ql3fq7wfVhB3_kWP6dNvAAY8GIaA770dV5FfB3t8IIfoZ16G7svWOFl8GQJrR27d8D3dozdB76y9RjyOg-Dx4u-zc34sj5EO43tExz95gP0fHX5dH5D7h6ub88Xd6TmUo1Ec8f5yikJWtWKl6IutQPqqqqwTjWMg6LAVhwaYbUUVDbWcqeEc1QDCCUO0Ml8d4jhbYI0mtcwRZ9fGsGZ0kWhZJFVbFbVMaQUoTFDzHjip2HUbECbGbTJoM0GtBHZw2dPylrfQvy7_L_pB_MPg6M |
| Cites_doi | 10.1007/s41870-022-00890-4 10.1007/s11042-023-14352-x 10.1109/ACCESS.2024.3351709 10.1016/j.eswa.2020.114231 10.1016/j.neunet.2024.106360 10.1016/j.eswa.2023.122799 10.1016/j.ipm.2019.04.002 10.1016/j.chaos.2024.114633 10.1007/s00354-023-00230-5 10.1007/s11280-022-01034-1 10.1016/j.ins.2022.05.098 10.1007/s41870-023-01268-w 10.1007/s11042-020-09549-3 10.1016/j.ipm.2022.103251 10.1007/s12065-019-00300-y 10.1109/ACCESS.2023.3269660 10.1016/j.knosys.2021.107236 10.1007/s13278-022-00898-5 10.1080/02664763.2021.1919063 10.3390/math12101554 10.1007/s10639-023-11817-2 10.1016/j.neucom.2022.10.002 10.3389/fsoc.2022.886498 10.1109/ACCESS.2022.3211396 10.1016/j.sigpro.2023.109341 10.1016/j.patrec.2023.06.007 10.2196/19118 10.1016/j.patcog.2023.110037 10.18653/v1/2022.emnlp-main.176 10.1109/TEM.2022.3232178 |
| ContentType | Journal Article |
| Copyright | Systems Engineering Society of China and Springer-Verlag GmbH Germany 2025 Copyright Springer Nature B.V. Jun 2025 |
| Copyright_xml | – notice: Systems Engineering Society of China and Springer-Verlag GmbH Germany 2025 – notice: Copyright Springer Nature B.V. Jun 2025 |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s11518-024-5639-3 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1861-9576 |
| EndPage | 283 |
| ExternalDocumentID | 10_1007_s11518_024_5639_3 |
| GroupedDBID | -SA -S~ -Y2 .86 .VR 06D 0R~ 0VY 1N0 29L 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 5GY 5VR 5VS 5XA 5XB 6NX 8TC 92E 92I 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABDBE ABDZT ABECU ABFSG ABFTD ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMFV ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACSTC ACZOJ ADHHG ADHIR ADHKG ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFUIB AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ATHPR AXYYD AYFIA B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS CAG CAJEA CCEZO CCPQU CCVFK CHBEP COF CQIGP CS3 CSCUP CW9 DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FA0 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 H13 HCIFZ HF~ HG6 HLICF HMJXF HRMNR HVGLF HZ~ H~9 IHE IJ- IKXTQ IWAJR IXD I~X I~Z J-C JBSCW JZLTJ KOV LLZTM M4Y M7S MA- N2Q NPVJJ NQJWS NU0 O9- O9J P2P P9P PF0 PHGZM PHGZT PT4 PTHSS Q-- QOS R89 R9I REI ROL RPX RSV S16 S1Z S27 S3B SAP SCL SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TCJ TGP TSG TUC U1G U2A U5K UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR ZMTXR ~A9 AAYXX ABRTQ AFFHD CITATION PQGLB |
| ID | FETCH-LOGICAL-c268t-92b22db86e98c8253c59be0b774ab8f12e80e1d2ef3a96306faa2b83bb09ee383 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001404910800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1004-3756 |
| IngestDate | Wed Nov 05 08:34:52 EST 2025 Sat Nov 29 07:49:06 EST 2025 Tue Jun 17 01:10:21 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Topic modeling purity and topic coherence natural language processing non-negative matrix factorization |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c268t-92b22db86e98c8253c59be0b774ab8f12e80e1d2ef3a96306faa2b83bb09ee383 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3218944864 |
| PQPubID | 2044147 |
| PageCount | 27 |
| ParticipantIDs | proquest_journals_3218944864 crossref_primary_10_1007_s11518_024_5639_3 springer_journals_10_1007_s11518_024_5639_3 |
| PublicationCentury | 2000 |
| PublicationDate | 20250600 2025-06-00 20250601 |
| PublicationDateYYYYMMDD | 2025-06-01 |
| PublicationDate_xml | – month: 6 year: 2025 text: 20250600 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | Journal of systems science and systems engineering |
| PublicationTitleAbbrev | J. Syst. Sci. Syst. Eng |
| PublicationYear | 2025 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | X Bai (5639_CR4) 2024; 176 M Ortiz-Bouza (5639_CR24) 2024; 12 K Rajendra Prasad (5639_CR27) 2021; 14 J Feng (5639_CR8) 2022; 607 R Misra (5639_CR20) 2022 R V E Quille (5639_CR26) 2023; 11 V Jannesari (5639_CR15) 2024; 242 Q Wang (5639_CR34) 2022; 35 A Zadgaonkar (5639_CR37) 2024; 42 D K Harman (5639_CR14) 1993 L George (5639_CR12) 2023; 15 A O Ojo (5639_CR23) 2024; 146 M Grootendorst (5639_CR13) 2022 B Ozyurt (5639_CR25) 2021; 168 Q Liu (5639_CR18) 2020; 22 W Zhang (5639_CR38) 2024; 12 O Ugochi (5639_CR32) 2022; 14 M Gao (5639_CR10) 2019 S Athukorala (5639_CR3) 2022; 12 A Y Muaad (5639_CR21) 2021; 2 B Amiri (5639_CR2) 2024; 181 Q Fu (5639_CR9) 2021 B Smail (5639_CR30) 2023; 28 L A Adamic (5639_CR1) 2005 L Jin (5639_CR16) 2023; 60 J Wang (5639_CR33) 2023; 515 X Wu (5639_CR35) 2022 S A Curiskis (5639_CR5) 2020; 57 Y Liu (5639_CR19) 2023; 71 B A H Murshed (5639_CR22) 2022; 10 M Yang (5639_CR36) 2021; 227 Y Dong (5639_CR6) 2024; 217 S Kinariwala (5639_CR17) 2023; 82 J Rashid (5639_CR29) 2023; 172 W Gao (5639_CR11) 2023; 26 R Egger (5639_CR7) 2022; 7 A Thielmann (5639_CR31) 2023; 50 R Rani (5639_CR28) 2021; 80 |
| References_xml | – volume: 14 start-page: 2005 issue: 4 year: 2022 ident: 5639_CR32 publication-title: International Journal of Information Technology doi: 10.1007/s41870-022-00890-4 – volume: 82 start-page: 26411 issue: 17 year: 2023 ident: 5639_CR17 publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-023-14352-x – volume: 12 start-page: 6423 year: 2024 ident: 5639_CR24 publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3351709 – volume: 168 start-page: 114231 year: 2021 ident: 5639_CR25 publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2020.114231 – volume: 176 start-page: 106360 year: 2024 ident: 5639_CR4 publication-title: Neural Networks doi: 10.1016/j.neunet.2024.106360 – volume: 242 start-page: 122799 year: 2024 ident: 5639_CR15 publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2023.122799 – volume: 57 start-page: 102034 issue: 2 year: 2020 ident: 5639_CR5 publication-title: Information Processing & Management doi: 10.1016/j.ipm.2019.04.002 – volume: 181 start-page: 114633 year: 2024 ident: 5639_CR2 publication-title: Chaos, Solitons & Fractals doi: 10.1016/j.chaos.2024.114633 – volume: 42 start-page: 109 issue: 1 year: 2024 ident: 5639_CR37 publication-title: New Generation Computing doi: 10.1007/s00354-023-00230-5 – volume: 26 start-page: 55 issue: 1 year: 2023 ident: 5639_CR11 publication-title: World Wide Web doi: 10.1007/s11280-022-01034-1 – volume: 2 start-page: 15 year: 2021 ident: 5639_CR21 publication-title: Computer Sciences & Mathematics Forum – volume: 607 start-page: 79 year: 2022 ident: 5639_CR8 publication-title: Information Sciences doi: 10.1016/j.ins.2022.05.098 – volume-title: News category dataset year: 2022 ident: 5639_CR20 – volume: 15 start-page: 2187 issue: 4 year: 2023 ident: 5639_CR12 publication-title: International Journal of Information Technology doi: 10.1007/s41870-023-01268-w – volume: 80 start-page: 3275 year: 2021 ident: 5639_CR28 publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-020-09549-3 – volume: 60 start-page: 103251 issue: 3 year: 2023 ident: 5639_CR16 publication-title: Information Processing & Management doi: 10.1016/j.ipm.2022.103251 – volume: 14 start-page: 545 issue: 2 year: 2021 ident: 5639_CR27 publication-title: Evolutionary Intelligence doi: 10.1007/s12065-019-00300-y – volume: 11 start-page: 41535 year: 2023 ident: 5639_CR26 publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3269660 – volume-title: Bertopic: Neural topic modeling with a class-based TF-IDF procedure year: 2022 ident: 5639_CR13 – volume: 227 start-page: 107236 year: 2021 ident: 5639_CR36 publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2021.107236 – volume-title: Proceedings of the 3rd International Workshop on Link Discovery (LinkKDD’ 05) year: 2005 ident: 5639_CR1 – volume: 12 start-page: 89 issue: 1 year: 2022 ident: 5639_CR3 publication-title: Social Network Analysis and Mining doi: 10.1007/s13278-022-00898-5 – volume: 35 start-page: 5269 issue: 5 year: 2022 ident: 5639_CR34 publication-title: IEEE Transactions on Knowledge and Data Engineering – volume: 50 start-page: 574 issue: 3 year: 2023 ident: 5639_CR31 publication-title: Journal of Applied Statistics doi: 10.1080/02664763.2021.1919063 – volume: 12 start-page: 1554 issue: 10 year: 2024 ident: 5639_CR38 publication-title: Mathematics doi: 10.3390/math12101554 – volume-title: The first text retrieval conference (TREC-1) year: 1993 ident: 5639_CR14 – volume-title: 2019 IEEE 8th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP) year: 2019 ident: 5639_CR10 – volume: 28 start-page: 15657 issue: 12 year: 2023 ident: 5639_CR30 publication-title: Education and Information Technologies doi: 10.1007/s10639-023-11817-2 – volume: 515 start-page: 157 year: 2023 ident: 5639_CR33 publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.10.002 – volume: 7 start-page: 886498 year: 2022 ident: 5639_CR7 publication-title: Frontiers in Sociology doi: 10.3389/fsoc.2022.886498 – volume: 10 start-page: 105328 year: 2022 ident: 5639_CR22 publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3211396 – volume-title: Agreeing to disagree: Choosing among eight topic-modeling methods year: 2021 ident: 5639_CR9 – volume: 217 start-page: 109341 year: 2024 ident: 5639_CR6 publication-title: Signal Processing doi: 10.1016/j.sigpro.2023.109341 – volume: 172 start-page: 158 year: 2023 ident: 5639_CR29 publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2023.06.007 – volume: 22 start-page: e19118 issue: 4 year: 2020 ident: 5639_CR18 publication-title: Journal of Medical Internet Research doi: 10.2196/19118 – volume: 146 start-page: 110037 year: 2024 ident: 5639_CR23 publication-title: Pattern Recognition doi: 10.1016/j.patcog.2023.110037 – volume-title: Mitigating data sparsity for short text topic modeling by topic-semantic contrastive learning year: 2022 ident: 5639_CR35 doi: 10.18653/v1/2022.emnlp-main.176 – volume: 71 start-page: 12593 year: 2023 ident: 5639_CR19 publication-title: IEEE Transactions on Engineering Management doi: 10.1109/TEM.2022.3232178 |
| SSID | ssj0036910 |
| Score | 2.3357975 |
| Snippet | Topic modeling stands as a well-explored and foundational challenge in the text mining domain. Traditional topic schemes based on word co-occurrences, aim to... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 257 |
| SubjectTerms | Algorithms Coders Complexity Data mining Datasets Documents Economic Theory/Quantitative Economics/Mathematical Methods Engineering Factorization Feature extraction Modelling Natural language processing Operations Research/Decision Theory Preprocessing Semantics Texts Words (language) |
| Title | Optimal Number of Topics in Topic Modeling Using Deep Auto Encoder Graph Regularized Non-Negative Matrix Factorization Algorithm |
| URI | https://link.springer.com/article/10.1007/s11518-024-5639-3 https://www.proquest.com/docview/3218944864 |
| Volume | 34 |
| WOSCitedRecordID | wos001404910800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer Nature - Connect here FIRST to enable access customDbUrl: eissn: 1861-9576 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0036910 issn: 1004-3756 databaseCode: RSV dateStart: 20030301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagMMDAG1EoyAMTyFLqJK49VtDCQkBQULfIji9QiSZVmyLExE_HdhMVEAywJYplRXf2PXy-70PoGLyEak8HhIqWJIHkKRFacmKC45Q1VWijdEc20Yoi3u-Lm7KPe1Lddq9Kks5Sz5vdjHPixPgUEhq3SvxFtBRasBmbot89VObXZ6KEILBH_q2QVaXMn6b46ozmEea3oqjzNd31f_3lBlorQ0vcnq2FTbQA2RZa_QQ4uI3er42FGJpBkSMCwXmKe_lokEzwIJs9YUuOZlvUsbtMgM8BRrg9LXLcyWz7-xhfWIhrfOs47MeDN9A4yjMSwaODEMdXFvP_FXcdj0_Z5Inbz4_mpXga7qD7bqd3dklKDgaSUMYLIqiiVCvOQPDEZJN-EgoFnjJRo1Q8bVLgHjQ1hdSXZi97LJWSKu4r5QkAk_7uolqWZ7CHcJAAC1MNqVA6EM3EpMZM-Vy1qOZhKGUdnVTKiEczqI14DqpsxRobscZWrLFfR41KXXG56yaxb-IVYfJNFtTRaaWe-edfJ9v_0-gDtEItCbA7immgWjGewiFaTl6KwWR85BbjBwMZ2sU |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFH6CgjR22AYMrVvZfOAEspQ6iWsfq62liDZDUKbdIjt-GZVoUrUpQpz2p892ExUmOIxbolhW9J79fvj5fR_AGwwyZgITUSZ7ikZK5FQaJagNjnPe1bGL0j3ZRC9JxPW1_FT3ca-a2-5NSdJb6m2zm3VOglqfQmPrVmn4GJ5EjmXHpehfrhrzG3JZQxC4I_9ezJtS5t-m-NMZbSPMe0VR72uG-__1lwewV4eWpL9ZC8_hERYvYPc3wMGXcHtpLcTcDko8EQgpczItF7NsRWbF5ok4cjTXok78ZQJygbgg_XVVkkHh2t-X5L2DuCafPYf9cvYLDUnKgiZ44yHEycRh_v8kQ8_jUzd5kv73G_tSfZsfwtfhYHo-ojUHA80YFxWVTDNmtOAoRWazyTCLpcZA26hRaZF3GYoAu4ZhHiq7lwOeK8W0CLUOJKJNf19BqygLPAISZcjj3GAutYlkN7OpMdeh0D1mRBwr1Ya3jTLSxQZqI92CKjuxplasqRNrGrah06grrXfdKg1tvCJtvsmjNrxr1LP9_M_Jjh80-gx2RtPJOB1_SD6ewDPmCIH9sUwHWtVyja_hafajmq2Wp35h3gFNUt2p |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB61UKFy4FGoWJ4-cGplkXUSr31cAUtR2xRRWnGL7Hi8Xakkq91QoZ746djeREurckC9JYplRTO2Z8Yz830AhxgVzEQmoUz2FE2UsFQaJahzji3v6tR76YFsopdl4vpaXjQ8p9O22r1NSc56GjxKU1kfjY09mje-OUMlqLMvNHUmlsYvYTFxgYyv6br8-r09imMuGzgCf_3fS3mb1vzXFH8aprm3-VeCNNidwep___EarDQuJ-nP1sg6vMDyDSw_AiLcgPsv7uS4cYOyQBBCKkuuqvGomJJROXsinjTNt66TUGRAThDHpH9bV-S09G3xE3Lmoa_JZeC2n4x-oyFZVdIMhwFanHz2XAB3ZBD4fZrmT9L_OXQv9Y-bTfg2OL06_kAbbgZaMC5qKplmzGjBUYrCRZlxkUqNkXbepNLCdhmKCLuGoY2V2-MRt0oxLWKtI4nowuK3sFBWJW4BSQrkqTVopTaJ7BYuZOY6FrrHjEhTpTrwrlVMPp5BcORzsGUv1tyJNfdizeMO7Laqy5vdOM1j58dIF4fypAPvW1XNPz852fazRh_A0sXJIP90nn3cgdfM8wSH25pdWKgnt7gHr4pf9Wg62Q9r9AEwYOaN |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+Number+of+Topics+in+Topic+Modeling+Using+Deep+Auto+Encoder+Graph+Regularized+Non-Negative+Matrix+Factorization+Algorithm&rft.jtitle=Journal+of+systems+science+and+systems+engineering&rft.au=Kherwa%2C+Pooja&rft.au=Arora%2C+Jyoti&rft.date=2025-06-01&rft.issn=1004-3756&rft.eissn=1861-9576&rft.volume=34&rft.issue=3&rft.spage=257&rft.epage=283&rft_id=info:doi/10.1007%2Fs11518-024-5639-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11518_024_5639_3 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1004-3756&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1004-3756&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1004-3756&client=summon |