Cyclic Generative Neural Networks for Improved Face Recognition in Nonstandard Domains

A system of methods for improving the quality of face recognition from infrared images is described. For testing the recognition algorithm in a multidomain environment, a database of ordinary and infrared face images is collected. An algorithm based on cyclic generative neural networks is developed....

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of computer & systems sciences international Ročník 57; číslo 4; s. 620 - 625
Hlavní autori: Grinchuk, O. V., Tsurkov, V. I.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Moscow Pleiades Publishing 01.07.2018
Springer Nature B.V
Predmet:
ISSN:1064-2307, 1555-6530
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:A system of methods for improving the quality of face recognition from infrared images is described. For testing the recognition algorithm in a multidomain environment, a database of ordinary and infrared face images is collected. An algorithm based on cyclic generative neural networks is developed. This algorithm makes it possible to transform images from the color domain into the infrared domain, which significantly increases the size of the training sample. It is shown that fine-tuning the recognition algorithm using the generated infrared images improves the recognition result on the test sample.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1064-2307
1555-6530
DOI:10.1134/S1064230718040093