Improved Accuracy Estimation of the Tikhonov Method for Ill-Posed Optimization Problems in Hilbert Space

The Tikhonov method is studied as applied to ill-posed problems of minimizing a smooth nonconvex functional. Assuming that the sought solution satisfies the source condition, an accuracy estimate for the Tikhonov method is obtained in terms of the regularization parameter. Previously, such an estima...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational mathematics and mathematical physics Jg. 63; H. 4; S. 519 - 527
1. Verfasser: Kokurin, M. M.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Moscow Pleiades Publishing 01.04.2023
Springer Nature B.V
Schlagworte:
ISSN:0965-5425, 1555-6662
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Tikhonov method is studied as applied to ill-posed problems of minimizing a smooth nonconvex functional. Assuming that the sought solution satisfies the source condition, an accuracy estimate for the Tikhonov method is obtained in terms of the regularization parameter. Previously, such an estimate was obtained only under the assumption that the functional is convex or under a structural condition imposed on its nonlinearity. Additionally, a new accuracy estimate for the Tikhonov method is obtained in the case of an approximately specified functional.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0965-5425
1555-6662
DOI:10.1134/S0965542523040103