Improved Accuracy Estimation of the Tikhonov Method for Ill-Posed Optimization Problems in Hilbert Space

The Tikhonov method is studied as applied to ill-posed problems of minimizing a smooth nonconvex functional. Assuming that the sought solution satisfies the source condition, an accuracy estimate for the Tikhonov method is obtained in terms of the regularization parameter. Previously, such an estima...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computational mathematics and mathematical physics Ročník 63; číslo 4; s. 519 - 527
Hlavný autor: Kokurin, M. M.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Moscow Pleiades Publishing 01.04.2023
Springer Nature B.V
Predmet:
ISSN:0965-5425, 1555-6662
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The Tikhonov method is studied as applied to ill-posed problems of minimizing a smooth nonconvex functional. Assuming that the sought solution satisfies the source condition, an accuracy estimate for the Tikhonov method is obtained in terms of the regularization parameter. Previously, such an estimate was obtained only under the assumption that the functional is convex or under a structural condition imposed on its nonlinearity. Additionally, a new accuracy estimate for the Tikhonov method is obtained in the case of an approximately specified functional.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0965-5425
1555-6662
DOI:10.1134/S0965542523040103