Distributed Adaptive Dynamic Programming for Consensus Control of Multiagent Systems Within Hierarchical Stackelberg-Nash Game Framework
This article investigates the leader-follower consensus for nonlinear multiagent systems (MASs) and proposes an adaptive dynamic programming (ADP)-based hierarchical Stackelberg-Nash optimal game control method. Initially, a coupled performance index function associated with consensus errors is cons...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on systems, man, and cybernetics. Systems Jg. 55; H. 6; S. 4286 - 4300 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.06.2025
|
| Schlagworte: | |
| ISSN: | 2168-2216, 2168-2232 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | This article investigates the leader-follower consensus for nonlinear multiagent systems (MASs) and proposes an adaptive dynamic programming (ADP)-based hierarchical Stackelberg-Nash optimal game control method. Initially, a coupled performance index function associated with consensus errors is constructed. As the positive-definite function with the quadratic form is allocated to the constructed consensus errors-based performance index function, the original system stabilization problem is converted into the issue of seeking an optimal control strategy profile for the leader and followers. Under the hierarchical Stackelberg-Nash differential game framework, the optimal control strategies are derived in sequence and further proved to compose the equilibrium points of Stackelberg-Nash differential games. Afterward, based on the ADP technique, a modified single-critic neural network (NN) is implemented and the coupled Hamilton-Jacobi-Bellman (HJB) equation is approximately identified. Under the proposed control scheme, the leader-follower consensus of the considered MAS can be achieved while consuming less control cost. Meanwhile, all signals of the MAS are ensured to be uniformly ultimately bounded. Finally, a numerical simulation and an application to the electrode regulating system of the three-phase electric arc furnace are given to verify the effectiveness of the proposed control method. |
|---|---|
| ISSN: | 2168-2216 2168-2232 |
| DOI: | 10.1109/TSMC.2025.3548319 |