Orthogonal matrix and its application in Bloom’s threshold scheme

Applying the Gram–Schmidt process (also called Gram–Schmidt orthogonalization) to a matrix M ∈ G L ( n , R ) , set of n × n invertible matrices over the field of real numbers, with the usual inner product gives easily an orthogonal matrix. However, the orthogonality in the vector space F q k , where...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applicable algebra in engineering, communication and computing Jg. 30; H. 2; S. 147 - 160
Hauptverfasser: Mameri, Ahmed, Aissani, Amar
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 12.03.2019
Springer Nature B.V
Schlagworte:
ISSN:0938-1279, 1432-0622
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Applying the Gram–Schmidt process (also called Gram–Schmidt orthogonalization) to a matrix M ∈ G L ( n , R ) , set of n × n invertible matrices over the field of real numbers, with the usual inner product gives easily an orthogonal matrix. However, the orthogonality in the vector space F q k , where F q is a binary finite field, is quite tricky as there are non-zero vectors which are orthogonal to themselves. For this reason the computational variants of Gram–Schmidt orthogonalization can fail. This paper presents an algorithm for constructing random orthogonal matrices over binary finite fields. The approach is inspired from the Gram–Schmidt procedure. Since the inverse of orthogonal matrix is easy to compute, the orthogonal matrices are used to construct a proactive variant of Bloom’s threshold secret sharing scheme.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0938-1279
1432-0622
DOI:10.1007/s00200-018-0365-z