Fast and Sample-Efficient Relevance-Based Multi-Task Representation Learning

This letter explores an approach for task-relevant multi-task representation learning when the amount of data is limited for both source tasks and target tasks. Specifically, we consider a low-dimensional setting where the goal is to sample source task data based on their relevance so as to utilize...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE control systems letters Jg. 8; S. 1397 - 1402
Hauptverfasser: Lin, Jiabin, Moothedath, Shana
Format: Journal Article
Sprache:Englisch
Veröffentlicht: IEEE 2024
Schlagworte:
ISSN:2475-1456, 2475-1456
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This letter explores an approach for task-relevant multi-task representation learning when the amount of data is limited for both source tasks and target tasks. Specifically, we consider a low-dimensional setting where the goal is to sample source task data based on their relevance so as to utilize task-relevant information effectively. We present a novel learning algorithm based on an alternating projected gradient descent (GD) and minimization estimator. We present the convergence guarantee of our algorithm, excess risk, and the sample complexity of our approach. We evaluated the effectiveness of our algorithm via numerical experiments and compared it empirically against three benchmark approaches.
ISSN:2475-1456
2475-1456
DOI:10.1109/LCSYS.2024.3412880