Efficient and Stable Time Integration of Cahn–Hilliard Equations: Explicit, Implicit, and Explicit Iterative Schemes

To solve the Cahn–Hilliard equation numerically, a new time integration algorithm is proposed, which is based on a combination of the Eyre splitting and the local iteration modified (LIM) scheme. The latter is employed to tackle the implicit system arising each time integration step. The proposed me...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computational mathematics and mathematical physics Ročník 64; číslo 8; s. 1726 - 1746
Hlavní autori: Botchev, M. A., Fahurdinov, I. A., Savenkov, E. B.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Moscow Pleiades Publishing 01.08.2024
Springer Nature B.V
Predmet:
ISSN:0965-5425, 1555-6662
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:To solve the Cahn–Hilliard equation numerically, a new time integration algorithm is proposed, which is based on a combination of the Eyre splitting and the local iteration modified (LIM) scheme. The latter is employed to tackle the implicit system arising each time integration step. The proposed method is gradient-stable and allows one to use large time steps, whereas, regarding its computational structure, it is an explicit time integration scheme. Numerical tests are presented to demonstrate abilities of the new method and compare it with other time integration methods for Cahn–Hilliard equation.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0965-5425
1555-6662
DOI:10.1134/S0965542524700945