Efficient and Stable Time Integration of Cahn–Hilliard Equations: Explicit, Implicit, and Explicit Iterative Schemes

To solve the Cahn–Hilliard equation numerically, a new time integration algorithm is proposed, which is based on a combination of the Eyre splitting and the local iteration modified (LIM) scheme. The latter is employed to tackle the implicit system arising each time integration step. The proposed me...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computational mathematics and mathematical physics Ročník 64; číslo 8; s. 1726 - 1746
Hlavní autoři: Botchev, M. A., Fahurdinov, I. A., Savenkov, E. B.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Moscow Pleiades Publishing 01.08.2024
Springer Nature B.V
Témata:
ISSN:0965-5425, 1555-6662
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:To solve the Cahn–Hilliard equation numerically, a new time integration algorithm is proposed, which is based on a combination of the Eyre splitting and the local iteration modified (LIM) scheme. The latter is employed to tackle the implicit system arising each time integration step. The proposed method is gradient-stable and allows one to use large time steps, whereas, regarding its computational structure, it is an explicit time integration scheme. Numerical tests are presented to demonstrate abilities of the new method and compare it with other time integration methods for Cahn–Hilliard equation.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0965-5425
1555-6662
DOI:10.1134/S0965542524700945