On some estimates for best approximations of bivariate functions by Fourier–Jacobi sums in the mean

Some problems in computational mathematics and mathematical physics lead to Fourier series expansions of functions (solutions) in terms of special functions, i.e., to approximate representations of functions (solutions) by partial sums of corresponding expansions. However, the errors of these approx...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational mathematics and mathematical physics Jg. 57; H. 10; S. 1559 - 1576
Hauptverfasser: Abilov, M. V., Kerimov, M. K., Selimkhanov, E. V.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Moscow Pleiades Publishing 01.10.2017
Springer Nature B.V
Schlagworte:
ISSN:0965-5425, 1555-6662
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Some problems in computational mathematics and mathematical physics lead to Fourier series expansions of functions (solutions) in terms of special functions, i.e., to approximate representations of functions (solutions) by partial sums of corresponding expansions. However, the errors of these approximations are rarely estimated or minimized in certain classes of functions. In this paper, the convergence rate (of best approximations) of a Fourier series in terms of Jacobi polynomials is estimated in classes of bivariate functions characterized by a generalized modulus of continuity. An approximation method based on “spherical” partial sums of series is substantiated, and the introduction of a corresponding class of functions is justified. A two-sided estimate of the Kolmogorov N-width for bivariate functions is given.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0965-5425
1555-6662
DOI:10.1134/S0965542517100037