Weighted Hardy spaces: shift invariant and coinvariant subspaces, linear systems and operator model theory

The Sz.-Nagy-Foias model theory for C ·0 contraction operators combined with the Beurling-Lax theorem establishes a correspondence between any two of four kinds of objects: shift-invariant subspaces, operatorvalued inner functions, conservative discrete-time input/state/output linear systems, and C...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Acta scientiarum mathematicarum (Szeged) Ročník 79; číslo 3-4; s. 623 - 686
Hlavní autoři: Ball, Joseph A., Bolotnikov, Vladimir
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 01.12.2013
Témata:
ISSN:0001-6969, 2064-8316
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The Sz.-Nagy-Foias model theory for C ·0 contraction operators combined with the Beurling-Lax theorem establishes a correspondence between any two of four kinds of objects: shift-invariant subspaces, operatorvalued inner functions, conservative discrete-time input/state/output linear systems, and C ·0 Hilbert-space contraction operators. We discuss an analogue of all these ideas in the context of weighted Hardy spaces over the unit disk and an associated class of hypercontraction operators.
ISSN:0001-6969
2064-8316
DOI:10.1007/BF03651344