Weighted Hardy spaces: shift invariant and coinvariant subspaces, linear systems and operator model theory
The Sz.-Nagy-Foias model theory for C ·0 contraction operators combined with the Beurling-Lax theorem establishes a correspondence between any two of four kinds of objects: shift-invariant subspaces, operatorvalued inner functions, conservative discrete-time input/state/output linear systems, and C...
Uložené v:
| Vydané v: | Acta scientiarum mathematicarum (Szeged) Ročník 79; číslo 3-4; s. 623 - 686 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Cham
Springer International Publishing
01.12.2013
|
| Predmet: | |
| ISSN: | 0001-6969, 2064-8316 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | The Sz.-Nagy-Foias model theory for
C
·0
contraction operators combined with the Beurling-Lax theorem establishes a correspondence between any two of four kinds of objects: shift-invariant subspaces, operatorvalued inner functions, conservative discrete-time input/state/output linear systems, and
C
·0
Hilbert-space contraction operators. We discuss an analogue of all these ideas in the context of weighted Hardy spaces over the unit disk and an associated class of hypercontraction operators. |
|---|---|
| ISSN: | 0001-6969 2064-8316 |
| DOI: | 10.1007/BF03651344 |