Multigrid Waveform Relaxation for Anisotropic Partial Differential Equations

Multigrid waveform relaxation provides fast iterative methods for the solution of time-dependent partial differential equations. In this paper we consider anisotropic problems and extend multigrid methods developed for the stationary elliptic case to waveform relaxation methods for the time-dependen...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Numerical algorithms Ročník 31; číslo 1-4; s. 361 - 380
Hlavní autoři: van Lent, Jan, Vandewalle, Stefan
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer Nature B.V 01.12.2002
Témata:
ISSN:1017-1398, 1572-9265
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Multigrid waveform relaxation provides fast iterative methods for the solution of time-dependent partial differential equations. In this paper we consider anisotropic problems and extend multigrid methods developed for the stationary elliptic case to waveform relaxation methods for the time-dependent parabolic case. We study line-relaxation, semicoarsening and multiple semicoarsening multilevel methods. A two-grid Fourier–Laplace analysis is used to estimate the convergence of these methods for the rotated anisotropic diffusion equation. We treat both continuous time and discrete time algorithms. The results of the analysis are confirmed by numerical experiments.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1017-1398
1572-9265
DOI:10.1023/A:1021191719400