Adaptive Learning-Based k -Nearest Neighbor Classifiers With Resilience to Class Imbalance
The classification accuracy of a <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>-nearest neighbor (<inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>NN) classifier is largely depend...
Saved in:
| Published in: | IEEE transaction on neural networks and learning systems Vol. 29; no. 11; pp. 5713 - 5725 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
IEEE
01.11.2018
|
| Subjects: | |
| ISSN: | 2162-237X, 2162-2388 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The classification accuracy of a <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>-nearest neighbor (<inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>NN) classifier is largely dependent on the choice of the number of nearest neighbors denoted by <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>. However, given a data set, it is a tedious task to optimize the performance of <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>NN by tuning <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>. Moreover, the performance of <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>NN degrades in the presence of class imbalance, a situation characterized by disparate representation from different classes. We aim to address both the issues in this paper and propose a variant of <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>NN called the Adaptive <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>NN (Ada-<inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>NN). The Ada-<inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>NN classifier uses the density and distribution of the neighborhood of a test point and learns a suitable point-specific <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula> for it with the help of artificial neural networks. We further improve our proposal by replacing the neural network with a heuristic learning method guided by an indicator of the local density of a test point and using information about its neighboring training points. The proposed heuristic learning algorithm preserves the simplicity of <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>NN without incurring serious computational burden. We call this method Ada-<inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>NN2. Ada-<inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>NN and Ada-<inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>NN2 perform very competitive when compared with <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>NN, five of <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>NN's state-of-the-art variants, and other popular classifiers. Furthermore, we propose a class-based global weighting scheme (Global Imbalance Handling Scheme or GIHS) to compensate for the effect of class imbalance. We perform extensive experiments on a wide variety of data sets to establish the improvement shown by Ada-<inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>NN and Ada-<inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>NN2 using the proposed GIHS, when compared with <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>NN, and its 12 variants specifically tailored for imbalanced classification. |
|---|---|
| ISSN: | 2162-237X 2162-2388 |
| DOI: | 10.1109/TNNLS.2018.2812279 |