Scale Up or Scale Out for Graph Processing?
This column explores a simple question: scale up or scale out for graph processing? Should we simply throw beefier individual multi-core, large-memory machines at graph processing tasks and focus on developing more efficient multi-threaded algorithms, or are investments in distributed graph processi...
Uloženo v:
| Vydáno v: | IEEE internet computing Ročník 22; číslo 3; s. 72 - 78 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.05.2018
|
| Témata: | |
| ISSN: | 1089-7801, 1941-0131 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This column explores a simple question: scale up or scale out for graph processing? Should we simply throw beefier individual multi-core, large-memory machines at graph processing tasks and focus on developing more efficient multi-threaded algorithms, or are investments in distributed graph processing frameworks and accompanying algorithms worthwhile? For rhetorical convenience, I adopt customary definitions, referring to the former as scale up and the latter as scale out. Under what circumstances should we prefer one approach over the other? |
|---|---|
| ISSN: | 1089-7801 1941-0131 |
| DOI: | 10.1109/MIC.2018.032501520 |